

© Coinspect 2024 1 / 52

Bold Core
Smart Contract Audit

Version: v241231 Prepared for: Liquity December 2024

Security Assessment

1. Executive Summary
2. Summary of Findings
3. Scope
4. Changes from Liquity V1
5. Design and Risk Mitigation Mechanisms
6. Decentralization Analysis
7. Code quality and Testing
8. Fixes and Changes
9. Detailed Findings

BOLD-01 - Leveraged operations will not work as
approvals are spontaneously reset

© Coinspect 2024 2 / 52

BOLD-02 - Attackers can claim minted yield from the
Stability Pool without leaving their funds deposited
BOLD-03 - Adversaries can manipulate batch's
debt/shares ratio by deflating the debt
BOLD-04 - Unused code
BOLD-05 - Single oracle failure stops redemptions
across all branches triggering a depeg event
BOLD-06 - Wrong implementation of an LST oracle
forces protocol re-deployment
BOLD-07 - Amount of parameters when opening
troves facilitates deceiving users
BOLD-08 - Redemption decay rate is zero before
expected
BOLD-09 - Missing bold amount check in urgent
redemptions

10. Appendix: Protocol Overview
10.1 Protocol Architecture and Yield Generation
10.2 Asset and Position Management
10.3 Economic Mechanisms
10.4 Risk Management
10.5 Zappers

11. Disclaimer

© Coinspect 2024 3 / 52

1. Executive Summary
In October 2024, Liquity engaged Coinspect to perform a smart contract audit of
Liquity Bold Core. The objective of the project was to evaluate the security of the
smart contracts that implement the second version of the protocol.

Liquity V2 is a decentralized borrowing protocol that enables users to mint BOLD
stablecoin tokens using multiple forms of collateral, such as WETH and Liquid
Staking Tokens (LSTs). The system introduces several advancements to allow
users to optimize their borrowing condition such as user-set interest rates. These
improvements also include the representations of troves (i.e. debt positions) as
NFTs. Users can also open troves through batches, which enables efficient
adjustment of interest rates for multiple troves through batch managers.

Core stability mechanisms from Liquity V1, such as the redemption process and
liquidations, are adapted to the multi-collateral framework and user-set interest
rates. New features include delegation options for trove management, allowing
borrowers to delegate control to third parties. The system is designed to achieve
capital efficiency and stability, with mechanisms such as redemptions and batch
management designed to provide solvency and maintain the stablecoin's value.
For users, these enhancements translate to greater flexibility in managing debt
positions and improved system stability.

Extensive documentation, rigorous prior audits by multiple firms, and
comprehensive testing have contributed to a high-quality codebase. The
protocol's advanced development stage is evident in the severity and scope of
the issues identified during this audit.

Coinspect identified two significant findings during the security assessment: BOLD-
01 demonstrates that an approval reset renders Leveraged Zappers unusable,
while BOLD-05 highlights how a failure in a single oracle can halt redemptions
across all branches, causing a depeg of the stablecoin.

While Liquity V2 incorporates innovative features, such as multi-collateral support
and batch management, these enhancements add complexity, which introduces
unique operational risks. For instance, decentralized oracles and trust on batch
managers could influence the system’s overall resilience.

However, these risks have been mitigated with fallback mechanisms and batch-
level risk controls. Overall, Bold Core is a robust implementation of an innovative
DeFi protocol.

https://www.liquity.org/
https://coinspect.com/

© Coinspect 2024 4 / 52

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
2

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
7

No Risk
0

No Risk
0

Total

9
Total

0
Total

0

© Coinspect 2024 5 / 52

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

Solved issues & Recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

BOLD-01 Leveraged operations will not work as approvals are
spontaneously reset Medium

BOLD-05 Single oracle failure stops redemptions across all
branches triggering a depeg event Medium

BOLD-02 Attackers can claim minted yield from the Stability Pool
without leaving their funds deposited None

BOLD-03 Adversaries can manipulate batch's debt/shares ratio by
deflating the debt None

BOLD-04 Unused code None

BOLD-06 Wrong implementation of an LST oracle forces protocol
re-deployment None

BOLD-07 Amount of parameters when opening troves facilitates
deceiving users None

BOLD-08 Redemption decay rate is zero before expected None

BOLD-09 Missing bold amount check in urgent redemptions None

© Coinspect 2024 6 / 52

3. Scope
The scope was set to be the repository at https://github.com/liquity/bold/ at
commit aa8361269bb505de06afbe5a6646160cc9a935ef.

For this security assessment, Liquity requested Coinspect to focus on the
following features and components:

Stability Pool
Crypto Economics
Zappers
Batch Delegation

Coinspect reviewed these features after the project experienced changes and
fixes for previously reported issues.

https://github.com/liquity/bold/

© Coinspect 2024 7 / 52

4. Changes from Liquity V1
This section highlights the key updates and enhancements introduced in Liquity
V2, focusing on improved functionality, expanded features, and refined
mechanisms that build upon the foundation of the original protocol.

1. Collateral Support: The protocol migrated from a single-collateral, ETH, to a
multi-collateral system in V2. The new version supports WETH and Liquid
Staking Tokens (LSTs) including rETH and wstETH (but not ETH), enabling users
to utilize multiple types of ETH derivatives as collateral.

2. User Set Interest Rates: The system changed from having no interest rates
on borrowed LUSD to implementing a dynamic, market-driven approach with
user-set annual interest rates that borrowers can modify at any time. Interest
now accrues continuously and compounds discretely when the trove is
touched, enabling yield generation while allowing borrowers to optimize their
positions based on market conditions.

3. Yield Distribution: While V1 offered no yield from interest, V2 introduced a
yield generation and distribution system. BOLD yields generated from trove
interest are systematically split between the Stability Pool participants and
LP incentives, creating additional value streams for protocol stakeholders.

4. Redemption Mechanics: The redemption system underwent a redesign,
changing from being based on trove's ICR ordering to a routing system.
Redemptions are now proportionally distributed across branches based on
their relative "unbackedness" and within each branch, redemptions target
troves ordered by interest rate from lowest to highest, with the objective to
create a more efficient and balanced redemption process.

5. Token Implementation: The implementation changed from a straightforward
LUSD stablecoin to BOLD stablecoin with integrated NFT functionality. Troves
are now represented as NFTs, enabling improved transferability and
management of positions while maintaining the core stability mechanisms of
the protocol. They are meant to be transferred between different owner
accounts (e.g. hot and cold wallets). Trading them in a marketplace poses
additional risks. For example, trove delegations and management accounts
are not cleared after a transfer, the trove owner is able to reduce the trove's
collateral before a trade, among other adversarial scenarios that could be
used by malicious sellers on marketplaces.

6. Recovery Mode: The protocol replaced the Recovery Mode mechanism
(which activated when system fell below 150% collateralization) with a
Critical Collateral Ratio (CCR) restriction system. This new approach

© Coinspect 2024 8 / 52

provides more granular control over system stability seeking to keep the
protection against undercollateralization.

7. Unredeemable troves: The protocol shifted from automatically closing
troves during redemptions to keeping them open, introducing a new concept
of "unredeemable troves" when debt falls below minimum. This change aims
to provide more flexibility for borrowers while maintaining system stability
through minimum debt requirements.

8. Management System: V2 introduced a delegation framework, featuring both
individual and batch delegation systems. This allows more sophisticated
management of interest rates and trove adjustments, with the goal of
enabling more efficient position management and potential for management
services.

9. Liquidation Mechanics: The liquidation system changed from simple full
collateral seizure to a new mechanism with variable liquidation penalties. The
new system allows for potential collateral surplus returns to borrowers.

10. Gas Compensation: The gas compensation mechanism developed from a
simple ETH-based system to an approach combining WETH and collateral.

11. Emergency Measures: The protocol replaced the Recovery Mode with a
collateral branch shutdown mechanism. This new system triggers upon either
price collapse or oracle failure, providing branch-specific protection.

12. Stability Pool: The Stability Pool implementation received more flexibility in
V2. Users can now choose to claim or stash LST gains and handle BOLD yield
gains separately, providing more options for managing returns and positions.

13. Oracle Implementation: The oracle system was modified from primarily
relying on Chainlink's ETH/USD oracle to supporting multiple oracle
configurations for different collateral types. This includes composite oracle
setups for LSTs.

© Coinspect 2024 9 / 52

5. Design and Risk Mitigation
Mechanisms
The Liquity V2 protocol includes several features designed to address potential
risks and enhance the system's resilience. This section highlights the security-
related mechanisms implemented in the protocol, focusing on collateral
management, liquidations, yield distribution, position tracking, and emergency
measures. The analysis reflects the functionality and intended impact of these
mechanisms as observed during the audit.

Additional details about the Liquity V2 architecture and operations can be found
in this report's Appendix, which provides an in-depth protocol overview. Further
technical information is also available in Liquity's official README, offering a
detailed explanation of its design and implementation.

Collateral Support

The protocol's multi-collateral framework, supporting WETH and Liquid Staking
Tokens (LSTs) like rETH and wstETH, works with independent branches with tailored
risk collateral ratios, to manage collateral-specific risks effectively.

Interest Rate Mechanism

The protocol's interest rate mechanism enables borrowers to set individual rates,
with interest accruing continuously and compounding upon trove modifications.
Redemption prioritization is based on interest rates, targeting positions with the
lowest rates first. This structure aligns redemption processes with borrower-
defined rates, while batch interest calculations optimize gas usage for grouped
troves.

Yield Distribution

Yield generated by interest payments is allocated between Stability Pool
depositors and liquidity providers using a fixed ratio. The protocol maintains a
global accounting mechanism combined with individual depositor snapshots to

https://github.com/liquity/bold?tab=readme-ov-file#table-of-contents

© Coinspect 2024 10 / 52

facilitate proportional reward distribution. The sum-product algorithm supports
the fair allocation of accumulated yield across participants.

Stability Pool Operations

The Stability Pool manages BOLD deposits contributed by users to support the
system during liquidations. Depositors are rewarded with liquidated collateral and
interest yield, tracked through snapshot-based accounting mechanisms. The pool
allows users to withdraw collateral gains directly or reinvest them into the system,
providing flexibility while supporting protocol stability.

Liquidation and Redemption Processes

The protocol incorporates a structured system to address undercollateralized
positions and handle user redemptions. Liquidations apply variable penalties, with
Stability Pool liquidations generally incurring lower penalties than redistributions
to active troves. Redemption prioritization follows interest rate ordering,
processing positions with the lowest rates first. The system updates variables at
the system-wide level after each operation, supporting consistent state tracking
across the protocol.

Unredeemable Troves

A new concept of unredeemable troves was introduced in V2. These troves
remain open when debt falls below the minimum threshold, providing borrowers
with more flexibility to restore positions. This change reduces forced closures
while maintaining system integrity through minimum debt requirements.

Management System

The delegation framework in V2 enables both individual and batch management
of troves. This allows more sophisticated control of interest rates and collateral
adjustments, optimizing position management and supporting potential
management services.

Gas Compensation

© Coinspect 2024 11 / 52

The protocol incorporates a mechanism to manage transaction costs for
liquidators. During trove creation, a fixed amount of WETH is allocated to the Gas
Pool. These funds are distributed to liquidators during successful operations, with
unspent amounts returned to trove owners upon normal closure. The system
balances the allocation of gas compensation with the preservation of user
collateral.

Zappers

Zapper contracts operate as intermediaries for managing Liquity positions,
facilitating token swaps, flash loans, and multi-step operations. These contracts
incorporate sender authentication, and access control mechanisms to support
efficient position management. The architecture consolidates multiple operations
into single transactions, reducing operational complexity and costs.

Oracle Implementation

The V2 expanded its oracle framework beyond Chainlink's ETH/USD oracle to
include multiple configurations tailored to the supported collateral types, such as
composite oracles for LSTs. This diversification improves robustness in price data
and supports the protocol’s multi-collateral architecture.

Emergency Measures

Emergency mechanisms address critical scenarios, such as branch
collateralization falling below thresholds or oracle failures. Branch shutdown
processes include freezing borrower operations, halting interest accrual, and
enabling urgent redemptions. In the case of oracle disruptions, the protocol
employs a last-good-price mechanism to maintain functionality, allowing
redemptions to continue even under adverse conditions.

© Coinspect 2024 12 / 52

6. Decentralization Analysis
Despite its decentralized design, Liquity V2 presents a few centralization risks.
The protocol's reliance on Chainlink oracles for collateral valuation introduces a
dependency on an external service. This reliance is critical for the system's
operation and risk assessment.

The incorporation of Liquid Staking Tokens as collateral adds potential
centralization risks associated with the governance and operation of these tokens'
underlying protocols. The stability and decentralization of Liquity V2 partly
depend on the characteristics of these external systems.

The batch management feature, allowing designated actors to control interest
rates for multiple troves, presents a potential concentration of influence. If
significant portions of the system's debt come under the management of a few
large batches, it could lead to centralization of decision-making power within the
protocol.

© Coinspect 2024 13 / 52

7. Code quality and Testing
The documentation for Liquity V2 is comprehensive, covering the core
architecture, key mechanisms, and mathematical foundations of the protocol. It
provides detailed explanations of changes from V1, known issues, and mitigation
strategies. The documentation includes descriptions of the smart contract
structure and interactions between different components of the system.

However, many smart contract functions lack NatSpec documentation. Adding
NatSpec to function definitions would significantly improve code readability and
maintainability. This addition would provide clear, standardized descriptions of
function purposes, parameters, return values, and any important notes or
warnings directly within the smart contract code.

While thorough, the documentation could benefit from more visual aids to
enhance understanding of complex interactions within the system. Additionally,
including more practical examples of user interactions and potential scenarios or
expected flows would further clarify the protocol's operation for both users and
developers.

Coinspect identified that the testing suite is comprehensive, thorough and easy to
understand. This eased the process of testing different scenarios and confirming
potential issues.

© Coinspect 2024 14 / 52

8. Fixes and Changes
On November 4th 2024, Liquity engaged Coinspect to perform a Smart Contract
Audit of several fixes and modifications included to Bold. The objective of the
project was to evaluate the security of the smart contracts' implementation.

A new exchange used by Zappers that routes swaps between Curve and
UniswapV3
A fix for feedback errors in the Stability Pool
The addition of a check for zero-debt in batched troves

8.1 Zappers Hybrid Exchange

The scope was set to be the /contracts/src/Zappers/ directory the repository at
https://github.com/liquity/bold/ at commit
ec2272fa7887f323293c154c0ae42008577d8e6e.

Coinspect reviewed the new implementation for Hybrid Exchanges used by
Zappers. These exchanges allow complex and more efficient swap routes
leveraging from Curve and Uniswap V3. Swaps of stablecoins (BOLD <--> USDC)
are made in Curve whereas those involving non-stable tokens (collateral) use
UniswapV3. Its architecture allows performing more efficient swaps by reducing
the global inefficiencies of using volatile pools for stablecoins.

Coinspect observed that intermediate swaps specify an infinite slippage, checking
only the slippage on the last swap. Although the behavior protects end users, it
can also increase the amount of reversals if the intermediate swap returns less
tokens than those required to make the last swap. Users are still protected by the
final slippage check enforced at the end of the swap route. However, this
approach may lead to unnecessary gas consumption when intermediate swaps
execute successfully but the transaction ultimately reverts at the final slippage
check.

8.2 Stability Pool Fix

The scope was set to be the pull request #552 the repository at
https://github.com/liquity/bold/ at commit
87198e94137d0b667d5a63bbb4a3ff3d7a3c8011.

https://www.liquity.org/
https://coinspect.com/
https://github.com/liquity/bold/
https://github.com/liquity/bold/pull/552
https://github.com/liquity/bold/

© Coinspect 2024 15 / 52

The introduced fix changes how feedback errors are accumulated and accounted.
The issue was that errors were calculated using the absolute representation using
the previous Bold deposit value. After multiple liquidations the Bold's balance
decreases, amplifying the errors' value.

This new implementation changes an absolute error calculation for a relative one,
considering the total Bold deposits step by step. This smooths the error feedback
calculation, reducing the amplification effect of using older and higher total
deposit values.

8.3 Check for Zero Debt in Batched troves

The scope was set to be the pull request #560 the repository at
https://github.com/liquity/bold/ at commit
71026e626001e89174140081fb12272c0116c9b1.

This fix adds an invariant check to ensure that no dust is left after reducing the
debt of a trove inside a batch. A variable tracking the new troves' debt is added
to ensure that debt adjustments don't leave dust when the ending trove debt is
zero after an operation.

8.4 Minor changes

After the main review, Liquity added the following minor changes to the protocol:

Simplified zapper's interface of closeTroveFromCollateral() at
https://github.com/liquity/bold/pull/578
Added a check to prevent urgent redemptions with zero amount at
https://github.com/liquity/bold/pull/586/
Updated protocol's constants and tests at
https://github.com/liquity/bold/pull/562
Added a library to convert UniswapV3 prices at
https://github.com/liquity/bold/pull/571
Removed an unused dependency on a Zappers at
https://github.com/liquity/bold/pull/595/
Restricted delegation logic allowing other receivers when the caller is the
manager at https://github.com/liquity/bold/pull/610/files
Changed NFT font at https://github.com/liquity/bold/pull/601
Changed route for MockInterestRouter, used for testing at
https://github.com/liquity/bold/commit/10d87177bb9bee4a68a12e45e55a3636b
Added safeTransfer for transfers made through Zappers at
https://github.com/liquity/bold/pull/634
Edited unused interface at price feeds at
https://github.com/liquity/bold/pull/633 and
https://github.com/liquity/bold/pull/640

https://github.com/liquity/bold/pull/560
https://github.com/liquity/bold/
https://github.com/liquity/bold/pull/578
https://github.com/liquity/bold/pull/586/
https://github.com/liquity/bold/pull/562
https://github.com/liquity/bold/pull/571
https://github.com/liquity/bold/pull/595/
https://github.com/liquity/bold/pull/610/files
https://github.com/liquity/bold/pull/601
https://github.com/liquity/bold/commit/10d87177bb9bee4a68a12e45e55a3636b48e1f1c
https://github.com/liquity/bold/pull/634
https://github.com/liquity/bold/pull/633
https://github.com/liquity/bold/pull/640

© Coinspect 2024 16 / 52

Made two functions of price feeds abstract at
https://github.com/liquity/bold/commit/69d715c986789fe35aca7af06b5671d6e
Caches flashloan receiver address to comply with checks-effects-interactions
if the code is reused at https://github.com/liquity/bold/pull/666/

Coinspect identified no issues related to these minor changes.

https://github.com/liquity/bold/commit/69d715c986789fe35aca7af06b5671d6e25972d0
https://github.com/liquity/bold/pull/666/

© Coinspect 2024 17 / 52

9. Detailed Findings

BOLD-01
Leveraged operations will not work as
approvals are spontaneously reset

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Low
Likelihood
High

Location

bold/contracts/src/Zappers/LeverageWETHZapper.sol:80

bold/contracts/src/Zappers/LeverageWETHZapper.sol:157

bold/contracts/src/Zappers/LeverageLSTZapper.sol:85

bold/contracts/src/Zappers/LeverageLSTZapper.sol:160

Description

The ERC20 allowance is reset when making non leveraged operations through a
Zapper. This prevents subsequent leveraged operations from functioning

© Coinspect 2024 18 / 52

correctly, as Zappers can't properly interact with BorrowOperations once a
flashloan is received.

Upon deployment, leveraged Zappers grant infinite allowance for the
collateral token to the BorrowOperations contract:

 // Approve WETH to BorrowerOperations
 WETH.approve(address(_borrowerOperations), type(uint256).max);
 // Approve coll to BorrowerOperations
 collToken.approve(address(_borrowerOperations),
type(uint256).max);

This allowance is required when a user wants to perform operations that send
collateral to Liquity (e.g. opening leveraged troves, increasing a trove's
leverage):

 uint256 totalCollAmount = _params.collAmount +
_effectiveFlashLoanAmount;
 // We compute boldAmount off-chain for efficiency

 // Open trove
 if (_params.batchManager == address(0)) {
 vars.troveId = vars.borrowerOperations.openTrove(
 _params.owner,
 _params.ownerIndex,
 totalCollAmount,
 _params.boldAmount,
 _params.upperHint,
 _params.lowerHint,
 _params.annualInterestRate,
 _params.maxUpfrontFee,
 // Add this contract as add/receive manager to be able
to fully adjust trove,
 // while keeping the same management functionality
 address(this), // add manager
 address(this), // remove manager
 address(this) // receiver for remove manager
);
 }

 // Adjust trove
 // With the received coll from flash loan, we increase both the
trove coll and debt
 borrowerOperations.adjustTrove(
 _params.troveId,
 _effectiveFlashLoanAmount, // flash loan amount minus fee
 true, // _isCollIncrease
 _params.boldAmount,
 true, // _isDebtIncrease
 _params.maxUpfrontFee
);

© Coinspect 2024 19 / 52

However, leveraged Zappers inherit from base Zappers that allow users
handling non-leveraged troves. This functionality grants borrows operations
allowance for the collateral amount for that transaction, wiping the infinite
allowance granted upon deployment:

 function openTroveWithRawETH(OpenTroveParams calldata _params)
external payable returns (uint256)
 {...}
 // Pull and approve coll
 vars.collToken.safeTransferFrom(msg.sender, address(this),
_params.collAmount);
 vars.collToken.approve(address(vars.borrowerOperations),
_params.collAmount);
 {...}

As a consequence, leveraged operations will not have the necessary
allowance to interact with BorrowOperations, reverting the transaction.

Recommendation

Handle allowances to borrow operations inside each flashloan callback,
before handling troves on Liquity.

Status

Fixed on commit 7f2058a02cffeb6f9c8a21b605488a4faaa31b0c.

Approvals are now only handled upon deployment and are not refreshed
between intermediate steps.

Proof of Concept

The following scenario shows how opening a non-leveraged trove through a
Zapper resets its collateral token allowance to borrow operations. As a result,
trying to open a leveraged trove reverts since the transfer amount exceeds
allowance.

[FAIL. Reason: revert: ERC20: transfer amount exceeds allowance]
testCoinspectBreaksLeveragedZapper()

 function testCoinspectBreaksLeveragedZapper() external {
 ILeverageZapper _leverageZapper = leverageZapperCurveArray[1];
 uint256 _branch = 1; // index 1 means it is an LST

© Coinspect 2024 20 / 52

 address _batchManager = address(0);

 // A regular trove is opened (e.g. through openTroveWithRawETH)
 openTrove(_leverageZapper, B, 2.5 ether, 2000e18, true); //
this call resets the collToken approval to collAmount

 TestVars memory vars;
 vars.collAmount = 10 ether;
 vars.newLeverageRatio = 2e18;
 vars.resultingCollateralRatio =
_leverageZapper.leverageRatioToCollateralRatio(vars.newLeverageRatio);

 _setInitialBalances(_leverageZapper, _branch, vars);

 bool lst = _branch > 0;

 // Opening a trove reverts since there is not enough allowance
from the Zapper to BorrowOps
 vars.troveId = openLeveragedTrove(
 _leverageZapper,
 vars.collAmount,
 vars.newLeverageRatio,
 contractsArray[_branch].priceFeed,
 lst,
 _batchManager
);
 }

© Coinspect 2024 21 / 52

BOLD-02
Attackers can claim minted yield from the
Stability Pool without leaving their funds
deposited

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/StabilityPool.sol

Description

Opening and closing troves when the Stability Pool is bootstrapping (e.g.
after an epoch change) allow adversaries to extract most of the minted
interest by atomically depositing and withdrawing.

When a trove is opened or closed, aggregated interest is minted to the
Stability Pool:

 function _mintAggInterest(IBoldToken _boldToken, uint256
_upfrontFee) internal returns (uint256 mintedAmount) {
 mintedAmount = calcPendingAggInterest() + _upfrontFee;

 // Mint part of the BOLD interest to the SP and part to the
router for LPs.

© Coinspect 2024 22 / 52

 if (mintedAmount > 0) {
 uint256 spYield = SP_YIELD_SPLIT * mintedAmount /
DECIMAL_PRECISION;
 uint256 remainderToLPs = mintedAmount - spYield;

 _boldToken.mint(address(interestRouter), remainderToLPs);

 if (spYield > 0) {
 _boldToken.mint(address(stabilityPool), spYield);
 stabilityPool.triggerBoldRewards(spYield);
 }
 }

 lastAggUpdateTime = block.timestamp;
 }

When the Stability Pool is empty, the minted interest is accumulated and not
accounted as there is an early return to the _updateYieldRewardsSum which
skips updating epochToScaleToB:

 function _updateYieldRewardsSum(uint256 _newYield) internal {
 uint256 accumulatedYieldGains = yieldGainsPending + _newYield;
 if (accumulatedYieldGains == 0) return;

 // When total deposits is very small, B is not updated. In this
case, the BOLD issued is hold
 // until the total deposits reach 1 BOLD (remains in the
balance of the SP).
 uint256 totalBoldDepositsCached = totalBoldDeposits; // cached
to save an SLOAD
 if (totalBoldDepositsCached < DECIMAL_PRECISION) {
 yieldGainsPending = accumulatedYieldGains;
 return;
 }

 yieldGainsOwed += accumulatedYieldGains;
 yieldGainsPending = 0;

 /*
 * Calculate the BOLD-per-unit staked. Division uses a
"feedback" error correction, to keep the
 * cumulative error low in the running total B:
 *
 * 1) Form a numerator which compensates for the floor division
error that occurred the last time this
 * function was called.
 * 2) Calculate "per-unit-staked" ratio.
 * 3) Multiply the ratio back by its denominator, to reveal the
current floor division error.
 * 4) Store this error for use in the next correction when this
function is called.
 * 5) Note: static analysis tools complain about this "division
before multiplication", however, it is intended.
 */
 uint256 yieldNumerator = accumulatedYieldGains *
DECIMAL_PRECISION + lastYieldError;

 uint256 yieldPerUnitStaked = yieldNumerator /

© Coinspect 2024 23 / 52

totalBoldDepositsCached;
 lastYieldError = yieldNumerator - yieldPerUnitStaked *
totalBoldDepositsCached;

 uint256 marginalYieldGain = yieldPerUnitStaked * (P - 1);
 epochToScaleToB[currentEpoch][currentScale] =
epochToScaleToB[currentEpoch][currentScale] + marginalYieldGain;

 emit B_Updated(epochToScaleToB[currentEpoch][currentScale],
currentEpoch, currentScale);
 }

Then, all rewards are assigned to the first depositor when they provide more
than DECIMAL_PRECISION.

In conclusion, attackers can track trove openings and closures when the
Stability Pool is bootstrapping and maliciously extract minted interest leaving
the Stability Pool empty.

Consider the following scenario:

The liquidity across all opened troves is high, meaning that there is enough
Bold in circulation (required to make deposits into the Stability Pool).
At some point, the Stability Pool is emptied (e.g. due to massive
liquidations because of a market crash).
During this state, opening and closing troves mint interest to the empty
Stability Pool.
Attackers abuse this condition on every interest-minting transaction. They
deposit and withdraw some Bold into the Stability Pool to maliciously
extract almost all the recently minted interest.
As long as the pool remains empty, all proceeds from interest-minting are
vulnerable to this malicious extraction. Attackers are not required to leave
their funds locked into the Stability Pool to extract this value, allowing
them to quickly swap their profits elsewhere for a different token,
progressively dumping Bold.

Recommendation

Document this scenario and how it aligns with the Stability Pool incentives.

Status

Acknowledged.

The Liquity Team stated that they don't expect the Stability Pool to be empty
if there is significant borrowing activity. In such a case, the issue would be
easy to counteract if someone deposits just 1 BOLD.

© Coinspect 2024 24 / 52

Proof of concept

The following test shows a scenario where an attacker opens a trove to get
some Bold tokens. Then, waits until another user opens a trove, making a
deposit just before. After the trove is opened, withdraws all their stakes from
the Stability Pool extracting the fee and leaving the pool empty.

Output

Initial State...
 1. BOLD Balance in SP: 0

Opening initial Trove to B (generate Bold balance)...
 BoldYield minted: 69041095890410958904
 2. After opening TroveB: BOLD Balance in SP: 69041095890410958904

Before B Deposit on SP
 BOLD Balance in SP: 69041095890410958904
 getDepositorYieldGain(B): 0
 getYieldGainsPending(): 0
 getYieldGainsOwed(): 0
 Deposit amount: 1000000000000000000

Deposit successful...

After B Deposit on SP
 BOLD Balance in SP: 70041095890410958904
 getDepositorYieldGain(B): 69041095890410958834
 getYieldGainsPending(): 1000000000000000000
 getYieldGainsOwed(): 1000000000000000000

Opening victim Trove to C...
 BoldYield minted: 13808219178082191780
 2. After opening TroveB: BOLD Balance in SP: 83849315068493150684

Withdrawing position claiming collateral and yield...
 BOLD Balance in SP: 83849315068493150684
 getDepositorYieldGain(B): 82849315068493150601
 getYieldGainsPending(): 1000000000000000000
 getYieldGainsOwed(): 1000000000000000000

After Withdrawal
 BOLD Balance in SP: 83
 getDepositorYieldGain(B): 0
 getYieldGainsPending(): 0
 getYieldGainsOwed(): 0

Bold Profit of B: 82849315068493150601

Test

© Coinspect 2024 25 / 52

 function test_Coinspect_StealsMintedYield() public {
 console.log("\nInitial State...");
 console.log("1. BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));

 // Open Troves
 uint256 troveDebtRequest_B = 100_000e18; // Simulate that many
troves are opened
 uint256 interestRate = 5e16; // 5%
 uint256 price = 2000e18;
 priceFeed.setPrice(price);

 console.log("\nOpening initial Trove to B (generate Bold
balance)...");
 uint256 troveB = openTroveNoHints100pct(B, 150 ether,
troveDebtRequest_B, interestRate);
 console.log("2. After opening TroveB: BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));

 // B deposits to SP
 console.log("\nBefore B Deposit on SP");
 console.log("BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));
 console.log("getDepositorYieldGain(B): %s",
stabilityPool.getDepositorYieldGain(B));
 console.log("getYieldGainsPending(): %s",
stabilityPool.getTotalBoldDeposits());
 console.log("getYieldGainsOwed(): %s",
stabilityPool.getTotalBoldDeposits());

 uint256 depositAmount = 1e18;
 uint256 initialBoldBalance_B = boldToken.balanceOf(B);
 console.log("Deposit amount: %s", depositAmount);
 makeSPDepositAndClaim(B, depositAmount);
 console.log("\nDeposit successful...");

 console.log("\nAfter B Deposit on SP");
 console.log("BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));
 console.log("getDepositorYieldGain(B): %s",
stabilityPool.getDepositorYieldGain(B));
 console.log("getYieldGainsPending(): %s",
stabilityPool.getTotalBoldDeposits());
 console.log("getYieldGainsOwed(): %s",
stabilityPool.getTotalBoldDeposits());

 console.log("\nOpening victim Trove to C...");
 uint256 troveDebtRequest_C = 20_000e18;
 uint256 troveC = openTroveNoHints100pct(C, 15 ether,
troveDebtRequest_C, interestRate);
 console.log("2. After opening TroveB: BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));

 console.log("\nWithdrawing position claiming collateral and
yield...");
 console.log("BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));
 console.log("getDepositorYieldGain(B): %s",
stabilityPool.getDepositorYieldGain(B));
 console.log("getYieldGainsPending(): %s",

© Coinspect 2024 26 / 52

stabilityPool.getTotalBoldDeposits());
 console.log("getYieldGainsOwed(): %s",
stabilityPool.getTotalBoldDeposits());

 vm.prank(B);
 stabilityPool.withdrawFromSP(type(uint256).max, true); //
withdraw all

 console.log("\nAfter Withdrawal");
 console.log("BOLD Balance in SP: %s",
boldToken.balanceOf(address(stabilityPool)));
 console.log("getDepositorYieldGain(B): %s",
stabilityPool.getDepositorYieldGain(B));
 console.log("getYieldGainsPending(): %s",
stabilityPool.getTotalBoldDeposits());
 console.log("getYieldGainsOwed(): %s",
stabilityPool.getTotalBoldDeposits());

 console.log("\nBold Profit of B: %s", boldToken.balanceOf(B) -
initialBoldBalance_B);
 }

© Coinspect 2024 27 / 52

BOLD-03
Adversaries can manipulate batch's
debt/shares ratio by deflating the debt

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/TroveManager.sol:1807

Description

Trove owners inside a batch can manipulate the value of batchDebtShares by
repaying small amounts of debt. As a consequence, the batch's debt is
reduced leaving the amount of shares constant.

Shares of a batch are updated inside _updateBatchShares when a trove of the
batch is touched. Upon debt decrease, shares are updated as follows:

// Subtract debt
batchDebtSharesDelta = currentBatchDebtShares * debtDecrease /
_batchDebt;

Troves[_troveId].batchDebtShares -= batchDebtSharesDelta;
batches[_batchAddress].debt = _batchDebt - debtDecrease;

© Coinspect 2024 28 / 52

batches[_batchAddress].totalDebtShares = currentBatchDebtShares -
batchDebtSharesDelta;

Making small debt decreases to a trove leads to batchDebtSharesDelta being
zero for non-zero debt decreases (rounds down). Then, when a new trove is
opened in the same batch more debt shares are assigned to that trove. This
happened because the batchDebt decreased but the batch shares remained
constant after the manipulation:

 // To avoid rebasing issues, let’s make sure the ratio debt /
shares is not too high
 _requireBelowMaxSharesRatio(currentBatchDebtShares, _batchDebt,
_checkBatchSharesRatio);

 batchDebtSharesDelta = currentBatchDebtShares * debtIncrease /
_batchDebt;
}

Troves[_troveId].batchDebtShares += batchDebtSharesDelta;
batches[_batchAddress].debt = _batchDebt + debtIncrease;
batches[_batchAddress].totalDebtShares = currentBatchDebtShares +
batchDebtSharesDelta;

This issue is considered to have no impact, since this path reduces the debt
of a batch. It aims to flag a scenario where an attacker can still manipulate
the tracking of variables, altering the representation of debt per share of a
batch.

Recommendation

Set a minimum value for debt decreases, ensuring that this minimum leaves no
dust.

Status

Acknowledged at https://github.com/liquity/bold/issues/553#issuecomment-
2519934916.

Proof of Concept

The following scenario shows how an attacker is able to deflate the debt
without altering the batch's shares.

https://github.com/liquity/bold/issues/553#issuecomment-2519934916

© Coinspect 2024 29 / 52

 batchDebtShares: 2036012054794520547945
 debt: 2036012831469590917621
 allBatchDebtSharesBefore: 2036012054794520547945

 repay to force rounding
 batchDebtShares: 2036012054794520547945
 debt: 2036012831469590917421
 allBatchDebtSharesAfter: 2036012054794520547945

deltas
 batchDebtShares: 0
 debt: 200
 allBatchDebtSharesBefore: 0

function testCoinspectDeflateDebtLeavingSharesConstant() public {
 // === Generate Bold Balance on A === //
 priceFeed.setPrice(2000e18);
 openTroveNoHints100pct(C, 100 ether, 100e21,
MAX_ANNUAL_INTEREST_RATE);
 vm.startPrank(C);
 boldToken.transfer(A, boldToken.balanceOf(C));
 vm.stopPrank();

 uint256 BTroveId = openTroveAndJoinBatchManager(B, 100 ether,
MIN_DEBT - 2.3 ether, B, MAX_ANNUAL_INTEREST_RATE);

 if (WITH_INTEREST) {
 vm.warp(block.timestamp + 12);
 }
 _addOneDebtAndEnsureItDoesntMintShares(BTroveId, B);

 (uint256 debtBefore,,,,,,, uint256 allBatchDebtSharesBefore) =
troveManager.getBatch(B);
 uint256 sharesBeforeRedeem = _getBatchDebtShares(BTroveId);
 console.log("batchDebtShares: %s", sharesBeforeRedeem);
 console.log("debt: %s", debtBefore);
 console.log("allBatchDebtSharesBefore: %s",
allBatchDebtSharesBefore);

 vm.startPrank(A);
 uint256 debtAfter;
 uint256 allBatchDebtSharesAfter;
 uint256 sharesAfterRedeem;

 console.log("\n repay to force rounding");
 uint256 x;
 while (x++ < 200) {
 borrowerOperations.repayBold(BTroveId, 1);
 }

 (debtAfter,,,,,,, allBatchDebtSharesAfter) =
troveManager.getBatch(B);
 sharesAfterRedeem = _getBatchDebtShares(BTroveId);
 console.log("batchDebtShares: %s", sharesAfterRedeem);
 console.log("debt: %s", debtAfter);
 console.log("allBatchDebtSharesAfter: %s",
allBatchDebtSharesAfter);

© Coinspect 2024 30 / 52

 vm.stopPrank();

 console.log("\ndeltas");
 console.log("batchDebtShares: %s", sharesBeforeRedeem -
sharesAfterRedeem);
 console.log("debt: %s", debtBefore - debtAfter);
 console.log("allBatchDebtSharesBefore: %s",
allBatchDebtSharesBefore - allBatchDebtSharesAfter);
}

© Coinspect 2024 31 / 52

BOLD-04
Unused code

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/BorrowerOperations.sol:1263

bold/contracts/src/CollateralRegistry.sol

Description

The code includes an unused modifier in BorrowerOperations:

 function _requireIsShutDown() internal view {
 if (!hasBeenShutDown) {
 revert NotShutDown();
 }
 }

Also, the collateral registry initializes 10 immutable variables for tokens and
trove managers, but the documentation specifies that the amount of
collaterals (hence branches) to deploy is less than this value.

 IERC20Metadata internal immutable token0;
 IERC20Metadata internal immutable token1;

© Coinspect 2024 32 / 52

 IERC20Metadata internal immutable token2;
 IERC20Metadata internal immutable token3;
 IERC20Metadata internal immutable token4;
 IERC20Metadata internal immutable token5;
 IERC20Metadata internal immutable token6;
 IERC20Metadata internal immutable token7;
 IERC20Metadata internal immutable token8;
 IERC20Metadata internal immutable token9;

 ITroveManager internal immutable troveManager0;
 ITroveManager internal immutable troveManager1;
 ITroveManager internal immutable troveManager2;
 ITroveManager internal immutable troveManager3;
 ITroveManager internal immutable troveManager4;
 ITroveManager internal immutable troveManager5;
 ITroveManager internal immutable troveManager6;
 ITroveManager internal immutable troveManager7;
 ITroveManager internal immutable troveManager8;
 ITroveManager internal immutable troveManager9;

Recommendation

Remove unused code.

Status

Fixed on commit 4aa8b3473529eb1b181625d23e7bf403777111b8.

© Coinspect 2024 33 / 52

BOLD-05
Single oracle failure stops redemptions
across all branches triggering a depeg
event

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

bold/contracts/src/PriceFeeds/CompositePriceFeed.sol:31

Description

If an oracle fails to retrieve the canonical price of an LST token, redemptions
across all branches will be halted, leading to a depeg event. Additionally, all
user deposits in that branch will be locked and irrecoverable.

Price feeds for liquid staking tokens compare canonical prices with those
reported by Chainlink, using the minimum price to prevent upward
manipulation:

 function _fetchPrice() internal override returns (uint256, bool) {
 (uint256 ethUsdPrice, bool ethUsdOracleDown) =
_getOracleAnswer(ethUsdOracle);
 (uint256 lstEthPrice, bool lstEthOracleDown) =

© Coinspect 2024 34 / 52

_getOracleAnswer(lstEthOracle);

 // If one of Chainlink's responses was invalid in this
transaction, disable this PriceFeed and
 // return the last good LST-USD price calculated
 if (ethUsdOracleDown) return
(_disableFeedAndShutDown(address(ethUsdOracle.aggregator)), true);
 if (lstEthOracleDown) return
(_disableFeedAndShutDown(address(lstEthOracle.aggregator)), true);

 // Calculate the market LST-USD price: USD_per_LST =
USD_per_ETH * ETH_per_LST
 uint256 lstUsdMarketPrice = ethUsdPrice * lstEthPrice / 1e18;

 // Get the ETH_per_LST canonical rate directly from the LST
contract
 // TODO: Should we also shutdown if the call to the canonical
rate reverts, or returns 0?
 uint256 lstEthRate = _getCanonicalRate();

 // Calculate the canonical LST-USD price: USD_per_LST =
USD_per_ETH * ETH_per_LST
 uint256 lstUsdCanonicalPrice = ethUsdPrice * lstEthRate / 1e18;

 // Take the minimum of (market, canonical) in order to mitigate
against upward market price manipulation
 uint256 lstUsdPrice = LiquityMath._min(lstUsdMarketPrice,
lstUsdCanonicalPrice);

 lastGoodPrice = lstUsdPrice;

 return (lstUsdPrice, false);
 }

The canonical price for each collateral token is calculated by making an
external call to the smart contract of each LST. For example:

 function _getCanonicalRate() internal view override returns
(uint256) {
 // RETHToken returns exchange rate with 18 digit decimal
precision
 return IRETHToken(rateProviderAddress).getExchangeRate();
 }

 function _getCanonicalRate() internal view override returns
(uint256) {
 // OsTokenVaultController returns rate with 18 digit decimal
precision
 return
IOsTokenVaultController(rateProviderAddress).convertToAssets(1e18);
 }

 function _getCanonicalRate() internal view override returns
(uint256) {
 // StaderOracle returns ETH balance and ETHX supply each with

© Coinspect 2024 35 / 52

18 digit decimal precision

 (
 , // uint256 reportingBlockNumber
 uint256 ethBalance,
 uint256 ethXSupply
) = IStaderOracle(rateProviderAddress).exchangeRate();

 return ethBalance * 1e18 / ethXSupply;
 }

If any of the LST contracts revert, it bubbles up and reverts the call to
fetchPrice without leading to a branch shutdown. This scenario has two
catastrophic consequences:

1. Locked User Deposits: User deposits on that collateral's branch will
remain locked inside the protocol.

2. Reverted Redemptions: Redemptions will be halted, even if the protocol
has all other branches operative.

Both consequences are related to the fact that it is impossible to calculate
collateral ratios since this operation calls fetchPrice.

The second consequence arises because the CollateralRegistry smart
contract loops over every branch calculating the unbacked debt:

for (uint256 index = 0; index < totals.numCollaterals; index++) {
 ITroveManager troveManager = getTroveManager(index);
 (uint256 unbackedPortion, uint256 price, bool redeemable) =
 troveManager.getUnbackedPortionPriceAndRedeemability();
 prices[index] = price;
 if (redeemable) {
 totals.unbacked += unbackedPortion;
 unbackedPortions[index] = unbackedPortion;
 }
}

Because of this, when a single oracle reverts after being queried the canonical
price, the whole redeemCollateral call reverts. This prevents anyone from
redeeming BOLD, causing the stablecoin to depeg.

Since only a reversal from a single branch is needed, if the TVL of any of the
LSTs is lower than Liquity's, attackers have incentive to manipulate and/or
drain any of the underlying LST protocol in order to profit from Bold's depeg.
For example, canonical price for OSETH reverts when there are no assets:

 function _convertToShares(
 uint256 assets,
 uint256 totalShares_,
 uint256 totalAssets_,
 Math.Rounding rounding
) internal pure returns (uint256 shares) {
 // Will revert if assets > 0, totalShares > 0 and totalAssets = 0.

© Coinspect 2024 36 / 52

 // That corresponds to a case where any asset would represent an
infinite amount of shares.
 return
 (assets == 0 || totalShares_ == 0)
 ? assets
 : Math.mulDiv(assets, totalShares_, totalAssets_, rounding);
 }

Additionally, canonical feeds for wstETH (Lido) and ETHX (Stader) are
upgradeable contracts that could change in the future.

Coinspect considers a revert from LST contracts is unlikely. However, there
are scenarios where this could happen, for example, the V1 of the protocol
required a custom fix to its fallback price oracle to prevent an exploit during
ETH2 migration. Because of that, the likelihood of this issue has been
determined to be low.

The impact of this issue is high since it will trigger a depeg event, preventing
redemptions and locking all users' funds inside the broken branch. Also,
because it impacts redemptions for the whole protocol, oracles are
considered single points of failure for the system.

Recommendation

Use try-catch logic when making external calls to each LST contract. In case
of revert, evaluate the best alternative between triggering a branch shutdown
or keeping operating only with the price retrieved by Chainlink.

Status

Fixed on commit bf2a5c167784a24ad170c6939cfb8a56dff49704.

Liquity modified the price feeds by adding try-catch logic when retrieving
canonical exchange rates. This feature triggers a shutdown when canonical
rate feeds are not responding, preventing reversals during the redemption
process as mentioned on this issue.

Also, Liquity added safeguards to prevent triggering a shutdown in case of
insufficient gas forwarding when making the external call.

Lastly, Liquity removed osETH and ETHX as collateral types at the fix commit.

https://etherscan.io/address/0x7f39c581f595b53c5cb19bd0b3f8da6c935e2ca0#code
https://etherscan.io/address/0xF64bAe65f6f2a5277571143A24FaaFDFC0C2a737#readProxyContract
https://www.liquity.org/blog/tellor-issue-and-fix

© Coinspect 2024 37 / 52

BOLD-06
Wrong implementation of an LST oracle
forces protocol re-deployment

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/PriceFeeds/CompositePriceFeed.sol:75

Description

Each composite oracle is meant to override the _getCanonicalRate() function
to work as expected. However, if an oracle is deployed directly as a
CompositePriceFeed instead of using it as a parent with an overriden version of
_getCanonicalRate(), the branch depending on that oracle will not work.

 // Returns the ETH_per_LST as from the LST smart contract.
Implementation depends on the specific LST.
 function _getCanonicalRate() internal view virtual returns
(uint256) {}

When this function is not implemented, _fetchPrice returns zero and the
underlying branch will not be able to calculate collateral ratios.

© Coinspect 2024 38 / 52

Also the CollateralRegistry sets each branch upon deployment:

 ITroveManager internal immutable troveManager0;
 ITroveManager internal immutable troveManager1;
 ITroveManager internal immutable troveManager2;
 ITroveManager internal immutable troveManager3;
 ITroveManager internal immutable troveManager4;
 ITroveManager internal immutable troveManager5;
 ITroveManager internal immutable troveManager6;
 ITroveManager internal immutable troveManager7;
 ITroveManager internal immutable troveManager8;
 ITroveManager internal immutable troveManager9;

If this issue is detected after deploying the CollateralRegistry, the whole
protocol will have to be re-deployed in order to re-include that branch. This
happens because each branch sets the CollateralRegistry address upon
deployment.

Recommendation

Make CompositePriceFeed an abstract contract leaving _getCanonicalRate()
unimplemented.

Status

Partially fixed on bf2a5c167784a24ad170c6939cfb8a56dff49704. Fully fixed at
69d715c986789fe35aca7af06b5671d6e25972d0.

The CompositePriceFeed is now an abstract contract. Also, price feeds that
inherit from it are now enforced to override _getCanonicalRate() and
_fetchPricePrimary() since these functions are abstract.

© Coinspect 2024 39 / 52

BOLD-07
Amount of parameters when opening
troves facilitates deceiving users

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/BorrowerOperations.sol:196

Description

When opening a trove, users must input 11 parameters. This amount could
facilitate adversarial scenarios in case of a front-end attack. For example,
openings require specifying the delegation accounts for the trove (managers
and receiver):

 function openTrove(
 address _owner,
 uint256 _ownerIndex,
 uint256 _collAmount,
 uint256 _boldAmount,
 uint256 _upperHint,
 uint256 _lowerHint,
 uint256 _annualInterestRate,
 uint256 _maxUpfrontFee,
 address _addManager,

© Coinspect 2024 40 / 52

 address _removeManager,
 address _receiver
)

Users using a hardware wallet to interact with the dApp could require
enabling blind-signing in order to approve the trove opening transaction.
Most hardware wallets are yet exploring alternatives to prevent this (e.g.
Ledger Clear Signing), but it requires users to get new devices.

A compromised or malicious dApp might show users they are setting
themselves or address(0) as the delegation accounts but instead, set a
malicious account as the manager and receiver. Unsuspecting users might still
believe they are signing for a normal trove opening operation since the wallet
will show only a payload.

Moreover, users interacting with a browser wallet capable of parsing the
calldata into its parameters, will have to scroll all the way down to display the
delegation accounts information. This happens since these parameters are at
the end of the function's interface.

Users opening troves delegating management to malicious addresses could
be unaware of this unless they verify it at some point. Since delegations are
not cleared after transferring (per design decision), attackers could
accumulate a considerable amount of "owned" troves from unsuspecting
users and then proceed to drain them all at once.

Tests indicate that the most probable flow for users opening a trove for
themselves, involves the following set of parameters:

 troveId = borrowerOperations.openTrove(
 _account,
 _index,
 _coll,
 _boldAmount,
 0, // _upperHint
 0, // _lowerHint
 _annualInterestRate,
 upfrontFee,
 address(0),
 address(0),
 address(0)
);

It can be seen that for a common use-case, trove openings specify 6 out of
the 11 parameters. This leaves room for the before-mentioned attack by
tuning the other 5 parameters.

Recommendation

https://www.ledger.com/blog-ledgers-clear-signing-initiative-paving-the-way-for-safer-transactions

© Coinspect 2024 41 / 52

Add a function to BorrowOperations's interface (e.g.
openTroveSimplifiedToSelf()) with less parameters to reduce the attack
surface when signing for trove openings.

Status

Acknowledged.

The Liquity team stated that they accept the risks derived from this issue as
they are close to maximum contract size.

© Coinspect 2024 42 / 52

BOLD-08
Redemption decay rate is zero before
expected

Status

Solved

Resolution

Deferred

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/Dependencies/LiquityMath.sol:51

Description

The calculation of the decayRate when computing the redemption rate
specifies that it should become zero after almost 1000 years:

the decayed base rate will be 0 for 1000 years or > 1000 years

However, Coinspect identified that this rate is zero nearly after 35 days. This
is because the value of REDEMPTION_MINUTE_DECAY_FACTOR.

This quicker decay implies that fee rates decrease more rapidly, reducing the
collateral fee charged upon redemption. As a consequence, redemptions
would become more frequent and BOLD price might experience considerable
fluctuations.

© Coinspect 2024 43 / 52

Recommendation

Document this behavior and analyze the impact it could have in Bold price
fluctuations.

Status

Deferred.

The Liquity team stated:

The comment justifies why capping at 1,000 years is safe for `_decPow`.
It doesn’t say that it’s expected to decay in 1k years. So, as long as
the rate is zero after 1k years, the function is safe.
As the real value seems to be ~35 years, the function is therefore
super safe.

Proof of Concept

 function testDecayAfterSomeTime() external {
 uint256 _n = (34 days + 23 hours) / ONE_MINUTE;
 uint256 _base = REDEMPTION_MINUTE_DECAY_FACTOR;
 assertEq(LiquityMath._decPow(_base, _n), 0);
 }

© Coinspect 2024 44 / 52

BOLD-09
Missing bold amount check in urgent
redemptions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

bold/contracts/src/TroveManager.sol:850

Description

The CollateralRegistry smart contract checks for calls redeeming zero bold
amounts:

 function redeemCollateral(uint256 _boldAmount, uint256
_maxIterationsPerCollateral, uint256 _maxFeePercentage)
 external
 {
 _requireValidMaxFeePercentage(_maxFeePercentage);
 _requireAmountGreaterThanZero(_boldAmount);
 ...
 }

However, this is not the case for urgentRedemption(), allowing to trigger debt
redistributions without providing any BOLD.

© Coinspect 2024 45 / 52

Recommendation

Ensure that the BOLD to redeem is greater than zero.

Status

Fixed on commit 5c767f18625ccbc3b7979c46176551f1aba8869d.

© Coinspect 2024 46 / 52

10. Appendix: Protocol Overview

10.1 Protocol Architecture and Yield
Generation

Liquity V2 includes a multi-collateral lending system that supports various tokens
through independent branches, each with specific risk parameters. The protocol
implements a market-driven interest rate mechanism where borrowers set their
own rates, and generates yield through interest payments that are distributed
between stability providers and liquidity providers according to fixed ratios.

10.1.1 Collateral Support

The V2 implements a multi-collateral lending system where users can deposit WETH
and Liquid Staking Tokens (LSTs) - rETH and wstETH - as collateral. Each collateral
type operates in its independent branch with specific parameters and risk metrics.
Each collateral branch maintains its own set of parameters including Minimum
Collateral Ratio (MCR), Critical Collateral Ratio (CCR), and Shutdown Collateral Ratio
(SCR).

The protocol tracks collateral positions through three dedicated pools. The
ActivePool holds collateral for active troves, while the DefaultPool holds collateral
from liquidated positions. Any excess collateral from liquidations is stored in the
CollSurplusPool.

10.1.2 Interest Rate Mechanism

Borrowers set their own annual interest rate when opening a trove. The interest
accrues continuously based on the chosen rate and compounds when the trove is
modified (touched) through any operation. The chosen interest rate affects the
trove's position in redemption ordering, where lower rates are redeemed first. This
rate can be modified by the borrower or a delegated manager at any time.

The protocol calculates interest through a combination of mechanisms. Interest
accumulates as simple interest between trove operations, while it tracks
aggregate interest at a system level. For grouped troves, the protocol performs

© Coinspect 2024 47 / 52

batch interest calculations to optimize gas usage and maintain accounting of all
positions.

10.1.3 Yield Distribution

Interest generated from troves creates system revenue in BOLD tokens. The
protocol distributes this yield through a fixed split, with 72% directed to Stability
Pool depositors and 28% allocated to LP incentives (note these values were
updated to 75% and 25% after the audit). This distribution occurs when interest is
minted from aggregate system debt and on most system operations that touch
troves, with allocation happening proportionally to depositor stake in the Stability
Pool.

The yield system maintains accounting through several mechanisms. The protocol
tracks yield at a global level while maintaining individual depositor snapshots.
Accumulated yield calculations utilize a sum-product algorithm to make the
distribution of rewards. This creates a system where interest payments from
borrowers flow to stability providers and liquidity providers through a distribution
mechanism.

10.2 Asset and Position Management

Liquity V2 manages lending positions through NFT-based troves and the BOLD
stablecoin, handles special states like unredeemable positions, and provides
flexible management options through both individual and batch delegation
systems. This architecture enables efficient position tracking, specialized handling
of edge cases, and scalable management of multiple positions.

10.2.1 Token Implementation

The BOLD token works as the protocol's stablecoin, while troves exist as NFTs.
Each trove NFT represents a debt position against deposited collateral, containing
data about the debt, collateral amount, and interest rate. The NFT implementation
enables trove transfers between addresses, though transfers maintain existing
delegations and management settings. The system mints a new NFT when a trove
opens and burns it upon closure.

10.2.2 Unredeemable Troves

© Coinspect 2024 48 / 52

Troves enter an unredeemable state when redemptions reduce their debt below
the minimum threshold. In this state, the last trove marked as zombie is used as
the first one in the next redemption sequence. Unredeemable troves maintain their
collateral and continue to accrue interest, though they cannot participate in
interest rate adjustments. The owner must either bring the trove's debt back
above minimum or close the position to exit this state.

10.2.3 Management System

The protocol implements delegation through individual and batch management
systems. Individual delegation allows trove owners to appoint managers for
specific operations, including collateral management, debt adjustments, and
interest rate modifications. These managers operate within owner-defined
parameters and permissions.

Batch management enables multiple troves to be managed as a group. Batch
managers control the interest rates for all troves in their batch, operating within
predefined minimum and maximum rate boundaries. The batch system includes
management fees, which accrue to the batch manager based on the total debt
under management. Batch operations process multiple troves in a single
transaction, reducing gas costs for interest rate adjustments and other
management functions.

10.2.4 Stability Pool

The Stability Pool holds BOLD tokens deposited by users who provide stability to
the system. Depositors receive rewards in the form of liquidated collateral and
interest yield from troves. The pool tracks deposits and rewards through a
scalable system using snapshots and mathematical formulas to calculate
accumulated gains. Users can choose to claim their collateral gains directly or
stash them for future withdrawal, while yield gains can be added to their deposit
or claimed as BOLD tokens. The pool processes liquidations by using deposited
BOLD to repay liquidated trove debt in exchange for collateral.

10.3 Economic Mechanisms

The protocol implements mechanisms to manage collateral branch health, process
position redemptions, and handle branch shutdowns. The system determines
redemption allocation through branch debt metrics and position interest rates,
with distinct processes for normal operations and shutdown scenarios.

© Coinspect 2024 49 / 52

10.3.1 Redemption Mechanics

The protocol's redemption system distributes redemptions across collateral
branches based on the unbackedness of each branch. Unbackedness represents
the difference between a branch's total BOLD debt and its Stability Pool deposits.
When users redeem BOLD tokens, the system calculates redemption amounts for
each branch proportionally to their unbackedness, ensuring branches with higher
unbackedness receive more redemptions.

Within each branch, redemptions target troves based on their interest rates. The
system processes redemptions starting from troves with the lowest interest rates,
moving upward. This creates a redemption queue where troves with lower rates
face redemptions before those with higher rates. For each redemption, users
receive collateral at face value minus the redemption fee. The redemption fee
increases with redemption volume and decays over time without redemptions.

During branch shutdown, the system enables urgent redemptions with no fee and
a collateral bonus. These redemptions bypass the interest rate ordering, allowing
users to specify which troves to redeem against. The shutdown redemption
mechanism aims to reduce the branch's debt by incentivizing redemptions
through the collateral bonus.

10.3.2 Gas Compensation

The system compensates liquidators for transaction costs through a combination
of WETH and collateral tokens. Each trove sets aside a fixed amount of WETH
(0.0375) upon opening, stored in the Gas Pool.

The compensation mechanism releases these funds to liquidators upon successful
liquidation of a trove. If a trove closes normally, the WETH returns to the owner. This
dual-token compensation structure balances the need to cover gas costs while
limiting the impact on the trove's collateral. When a liquidation occurs, the trove
Manager sends this compensation to the liquidator.

10.4 Risk Management

The protocol implements a multi-layered approach to risk management through
collateralization thresholds, branch shutdown conditions, and liquidation
processes. These mechanisms work together to maintain system solvency by
enforcing borrowing limits, handling oracle failures, and processing
undercollateralized positions through either the Stability Pool or redistribution to
other troves.

© Coinspect 2024 50 / 52

10.4.1 Critical Collateral Ratio (CCR)

The protocol enforces borrowing restrictions through the Critical Collateral Ratio
mechanism. When a branch's Total Collateral Ratio (TCR) falls below CCR, the
system limits borrower operations. Users can only open new troves with ICR
above CCR, while existing troves face restrictions on debt increases and collateral
withdrawals. The CCR restrictions remain until the branch's TCR returns above the
threshold. The system calculates TCR continuously using oracle prices and total
collateral values.

10.4.2 Emergency Measures

The branch shutdown mechanism activates in two scenarios: when TCR falls
below Shutdown Collateral Ratio (SCR), or when oracle failure occurs. Upon
shutdown, the branch freezes borrower operations except for trove closures,
stops interest accrual, and enables urgent redemptions. The system records the
shutdown timestamp to manage the transition state. The shutdown remains
permanent for that branch, preventing any reactivation.

The oracle failure path triggers when price feeds return invalid data, stale prices,
or revert. The system uses a last-good-price mechanism for urgent redemptions
after shutdown, allowing users to redeem their BOLD even when fresh prices
become unavailable. Each collateral type maintains its own set of oracle
parameters and failure conditions based on the underlying asset.

10.4.3 Liquidation Mechanics

The liquidation process incorporates variable penalties based on liquidation type.
Stability Pool liquidations use a lower penalty than redistributions to other troves.
The system calculates collateral seizure based on the liquidation penalty and
returns any surplus to the borrower through the CollSurplusPool. The liquidation
mechanism processes troves below Minimum Collateral Ratio (MCR).

The protocol distributes liquidated debt and collateral through two channels. The
Stability Pool receives the first liquidation using deposited BOLD to repay debt. Any
remaining liquidation redistributes to active troves proportional to their collateral.
The redistribution mechanism tracks gains through a system of snapshots and
applies them when troves undergo operations. Each liquidation updates system-
wide variables to maintain accurate accounting of redistributed assets.

10.5 Zappers

© Coinspect 2024 51 / 52

Zappers are peripheral smart contracts that work as intermediaries for managing
Liquity positions. These contracts implement position management through single
entry points, integrate token swaps and flash loans, support native token
operations, and execute multi-step position adjustments. They combine multiple
protocol operations into single transactions and handle the implementation of
swap and flash loan logic. These contracts, convert between native and wrapped
token versions required by the protocol and execute position leverage
modifications.

The threat model for Zapper contracts addresses several technical risk areas.
Sender authentication requires msg.sender validation across execution contexts,
access control mechanisms, and unauthorized call prevention. Token approvals
require quantity management for protocol interactions, delegation security, and
recipient validation. External interactions require trusted contract address
verification, external call target integrity, and return data validation.

These contracts operate as intermediary layers between users and the core
protocol, handling the orchestration of swaps, flash loans, and position
management operations. This architecture allows direct position and leverage
management through Zapper contracts rather than requiring separate
implementation of the underlying swap and flash loan mechanisms.

© Coinspect 2024 52 / 52

11. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

