

© Coinspect 2025 1 / 18

Governance V2
Smart Contract Audit

Version: v250120 Prepared for: Liquity January 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2025 2 / 18

LGOV�05 � Attackers can lock users' Bold bribes for
all future epochs
LGOV�06 � Lack of validation during deployment
allows spamming the governance
LGOV�07 � Overflow when calculating absolute values

6. Disclaimer

© Coinspect 2025 3 / 18

1. Executive Summary
In January 2025, Liquity engaged Coinspect to perform a smart contract audit of
Liquity's V2 Governance.

The objective of the project was to evaluate the security of the smart contracts
that implement the second version of the protocol's governance system.

The code reviewed enables decentralized governance through a modular
initiative-based system, allowing users to register initiatives, vote, and manage
their LQTY token allocations. Liquity's V2 Governance leverages an epoch-based
framework to balance broadness with resilience against manipulation. Incentives,
such as bribe-driven initiatives, promote active participation while preserving the
integrity of core processes. The design promotes inclusivity and transparency but
requires diligent community oversight to address potential misuse of its
permissionless features.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
1

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
2

No Risk
0

No Risk
0

Total

3
Total

0
Total

0

During this security assessment, Coinspect identified one medium-risk issue
related to how an arbitrary bribe token could be used to lock down all bribes sent

https://www.liquity.org/
https://coinspect.com/

© Coinspect 2025 4 / 18

in Bold. It is worth noting that, Liquity stated that they do not expect to deploy
initiatives with arbitrary bribe tokens.

© Coinspect 2025 5 / 18

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

LGOV�05 Attackers can lock users' Bold bribes for all future
epochs Medium

LGOV�06 Lack of validation during deployment allows spamming
the governance None

LGOV�07 Overflow when calculating absolute values None

© Coinspect 2025 6 / 18

3. Scope
The scope was set to be the repository at https://github.com/liquity/V2-gov at
commit 1c379b59f184f5805cf851d3969c6d0f800626b1. The smart contract
UniV4Donations is part of this commit but is out of this audit's scope.

On a previous engagement, Coinspect identified several issues on this smart
contract. Liquity's team removed this smart contract from the project at commit
972e4e86619adba49a6a0e0b442e21d5b7aee7a1.

https://github.com/liquity/V2-gov

© Coinspect 2025 7 / 18

4. Assessment
Liquity's V2 Governance system is designed to enable decentralized decision-
making. Comprised by a core governance smart contract that enables the
registration of initiatives and the allocation of voting power in a way designed to
align with community consensus. Incentive mechanisms, such as those facilitated
by the bribing initiatives, allow stakeholders to align rewards with participation,
enhancing engagement without disrupting core governance.

4.1 Security assumptions

The security of the system relies on participants exercising due diligence in their
interactions with governance mechanisms. This includes carefully reviewing
initiatives, understanding their parameters, and assessing potential impacts before
committing resources or votes. It is assumed that voters act with informed
judgment, and the community collectively ensures accountability and
transparency in decision-making. Seatbelts or a similar type of off-chain system
could be deployed to help users identify potentially malicious initiatives by, for
example, detecting forbidden or suspicious opcodes (e.g. selfdestruct) and
upgradeable smart contracts.

4.2 Decentralization

Fixe The governance's design limits the influence of individual actors by enabling
community-driven initiatives and voting processes. The staking of LQTY tokens
determines the voting power of participants, and an epoch-based system is
employed to manage governance stages. This design mitigates the risks of
sudden parameter manipulation or attacks within a single block, enhancing the
system's robustness.

A critical feature of the governance system is its openness; any user with
sufficient voting power and the ability to pay the registration fee can propose and
promote initiatives. This promotes transparency and inclusivity but introduces
certain risks. For instance, malicious actors could exploit the system by deploying
upgradeable initiatives and modifying their behavior post-deployment, potentially
deceiving users and compromising rewards.

https://github.com/Uniswap/governance-seatbelt
https://github.com/Uniswap/governance-seatbelt/blob/main/checks/check-targets-no-selfdestruct.ts

© Coinspect 2025 8 / 18

The governance framework lacks privileged roles or administrative functions to
adjust parameters, underscoring the importance of carefully chosen initial
configurations to ensure system stability.

4.3 Testing

The testing suite reflects Liquity's strong commitment to improving the security
and robustness of its codebase. Its comprehensive design enabled Coinspect to
efficiently explore a variety of adversarial scenarios and attack vectors. The suite
includes other capabilities such as fork tests, which provide realistic simulations
of blockchain conditions, and fuzz testing with frameworks like Echidna, allowing
for the exploration of edge cases and unexpected behaviors. Moreover, the
inclusion of proofs of concept from other reports highlights Liquity's proactive
approach to incorporating external insights, further enhancing the testing suite's
thoroughness and reliability.

4.4 Code quality

The codebase reflects a high level of quality, achieved through comprehensive
testing, in-depth audits conducted by multiple firms, and well-prepared
documentation. Detailed NatSpec on each relevant function and variable allows

© Coinspect 2025 9 / 18

5. Detailed Findings

LGOV�05
Attackers can lock users' Bold bribes for all
future epochs

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

V2-gov/src/BribeInitiative.sol:73"

Description

Anyone can deploy Bribe Initiatives with arbitrary tokens, which might lead to
a scenario where all Bold bribes deposited into the smart contract are locked.
This happens due to an overflow triggered when trying to claim bribes. As a
consequence, unsuspecting bribers will lose all their Bold bribes since the
claiming process reverts.

© Coinspect 2025 10 / 18

The implementation of Bribe Initiative allows its deployment with any bribe
token:

 constructor(address _governance, address _bold, address
_bribeToken) {
 require(_bribeToken != _bold, "BribeInitiative: bribe-token-
cannot-be-bold");

 governance = IGovernance(_governance);
 bold = IERC20(_bold);
 bribeToken = IERC20(_bribeToken);

 EPOCH_START = governance.EPOCH_START();
 EPOCH_DURATION = governance.EPOCH_DURATION();
 }

Then, any actor is able to supply bribes in both Bold and Bribe tokens.

When depositing, the smart contract increases internal trackers with each
supplied amount for future epochs:

 function depositBribe(uint256 _boldAmount, uint256
_bribeTokenAmount, uint256 _epoch) external {
 uint256 epoch = governance.epoch();
 require(_epoch >= epoch, "BribeInitiative: now-or-future-
epochs");

 bribeByEpoch[_epoch].remainingBoldAmount += _boldAmount;
 bribeByEpoch[_epoch].remainingBribeTokenAmount +=
_bribeTokenAmount;

 emit DepositBribe(msg.sender, _boldAmount, _bribeTokenAmount,
_epoch);

 bold.safeTransferFrom(msg.sender, address(this), _boldAmount);
 bribeToken.safeTransferFrom(msg.sender, address(this),
_bribeTokenAmount);
 }

Afterwards, once the epoch starts, allocators are able to claim the bribes
according to a share-based calculation that depends on their votes, in
_claimBribes():

 uint256 epochEnd = EPOCH_START + _epoch * EPOCH_DURATION;
 uint256 totalVotes = _lqtyToVotes(totalLQTYAllocation.lqty,
epochEnd, totalLQTYAllocation.offset);
 uint256 votes = _lqtyToVotes(lqtyAllocation.lqty, epochEnd,
lqtyAllocation.offset);
 uint256 remainingVotes = totalVotes - bribe.claimedVotes;

 boldAmount = bribe.remainingBoldAmount * votes /
remainingVotes;
 bribeTokenAmount = bribe.remainingBribeTokenAmount * votes /
remainingVotes;

© Coinspect 2025 11 / 18

 bribe.remainingBoldAmount -= boldAmount;
 bribe.remainingBribeTokenAmount -= bribeTokenAmount;
 bribe.claimedVotes += votes;

Consider a scenario where an upgradeable Bribe token is used. It can be
upgraded to a malicious implementation that assigns
remainingBribeTokenAmount to type(uint256).max upon bribe deposit, without
the need of transferring any token. This could be done after many Bold bribes
were sent for a given epoch, just before the epoch ends. As a consequence,
_claimBribes() overflows when trying to calculate the claimed
bribeTokenAmount since the remaining bribes were inflated:

 bribeTokenAmount = bribe.remainingBribeTokenAmount * votes /
remainingVotes;

Since the calculations to claim both Bold and the bribe tokens are made on
the same context, all bribes in Bold for that epoch will remain locked because
the execution reverts.

This scenario can be exploited by directly deploying the Bribe Initiative with
the malicious token or compromising an upgradeable bribe token, triggering
an upgrade to a malicious implementation.

Coinspect considers the likelihood to be low, since users still have to allocate
funds to this initiative or requires attackers compromising an upgradeable
token. The impact is high as valuable Bold tokens will remain locked inside the
smart contract.

Recommendation

Allow users to continue claiming Bold bribes if the calculation for the bribe
token amount overflows.

Alternatively, document this scenario related to upgradeable or potentially
malicious bribe tokens.

Status

Fixed by adding documentation.

The Liquity Team added this concern into the repository's readme as a known
issue.

https://github.com/liquity/v2-gov?tab=readme-ov-file#known-issues

© Coinspect 2025 12 / 18

Proof of Concept

The following test shows how a malicious bribe token allows locking all Bold
bribes deposited for an epoch, thanks to an overflow. The example uses a
simplified malicious implementation, but it can ultimately be any replaced by
any upgradeable token. An upgradeable token allows hiding the malicious
intention by making the sudden code update followed with the malicious
bribe deposit.

 ├─ [9383] BribeInitiative::claimBribes([ClaimData({ epoch: 3,
prevLQTYAllocationEpoch: 3, prevTotalLQTYAllocationEpoch: 3 })])
 │ ├─ [478] Governance::epoch() [staticcall]
 │ │ └─ ← [Return] 5
 │ └─ ← [Revert] panic: arithmetic underflow or overflow (0x11)
 └─ ← [Revert] panic: arithmetic underflow or overflow (0x11)

contract ArbBribeToken {
 function transferFrom(address from, address to, uint256 amount)
external pure returns (bool) {
 return true;
 }
}

function test_RevertClaimBribesWithArbBribeToken() public {
 // NOTE: This test requires deploying the ArbBribeToken in setUp()
 // and deploy the bribeInitiative with that token

 // =========== epoch 1 ==================
 // user stakes in epoch 1
 _stakeLQTY(user1, 1e18);

 // =========== epoch 2 ==================
 vm.warp(block.timestamp + EPOCH_DURATION);
 assertEq(2, governance.epoch(), "not in epoch 2");

 // lusdHolder deposits lqty claimable in epoch 3,
 vm.startPrank(lusdHolder);
 lusd.approve(address(bribeInitiative), 1e18);
 bribeInitiative.depositBribe(1e18, 0, governance.epoch() + 1);
 vm.stopPrank();

 // Right before the epoch ends, a malicious actor inflates
remainingBribeTokenAmount
 vm.warp(block.timestamp + EPOCH_DURATION - 12);
 bribeInitiative.depositBribe(0, type(uint256).max,
governance.epoch() + 1);

 uint256 depositedBribe = governance.epoch() + 1;

 // =========== epoch 3 ==================
 vm.warp(block.timestamp + 13);
 assertEq(3, governance.epoch(), "not in epoch 3");

© Coinspect 2025 13 / 18

 // user votes on bribeInitiative
 _allocateLQTY(user1, 1e18, 0);

 // =========== epoch 5 ==================
 vm.warp(block.timestamp + (EPOCH_DURATION * 2));
 assertEq(5, governance.epoch(), "not in epoch 5");

 // user won't be able to get the Bold bribes
 // all bold bribes for that epoch will remain locked
 (uint256 boldAmount, uint256 bribeTokenAmount) =
 _claimBribe(user1, depositedBribe, depositedBribe,
depositedBribe);
}

© Coinspect 2025 14 / 18

LGOV�06
Lack of validation during deployment
allows spamming the governance

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

V2-gov/src/Governance.sol:77

Description

The smart contract's deployment does not check that the registration fee and
threshold are not extremely low values. As a consequence, adversaries could
spam the governance by registering many malicious initiatives trying to
disrupt the functioning of the system.

The deployment includes multiple range checks for critical operational
variables:

require(_config.minClaim <= _config.minAccrual, "Gov: min-claim-gt-min-
accrual");
REGISTRATION_FEE = _config.registrationFee;

// Registration threshold must be below 100% of votes
require(_config.registrationThresholdFactor < WAD, "Gov: registration-

© Coinspect 2025 15 / 18

config");
REGISTRATION_THRESHOLD_FACTOR = _config.registrationThresholdFactor;

// Unregistration must be X times above the `votingThreshold`
require(_config.unregistrationThresholdFactor > WAD, "Gov:
unregistration-config");
UNREGISTRATION_THRESHOLD_FACTOR =
_config.unregistrationThresholdFactor;
UNREGISTRATION_AFTER_EPOCHS = _config.unregistrationAfterEpochs;

However, these checks allow dangerous configurations such as setting:

REGISTRATION_FEE == 0
REGISTRATION_THRESHOLD_FACTOR == 0

In such case, anyone would be able to register initiatives for free.

Recommendation

Revert the deployment when setting parameters to overly extreme values.

Status

Acknowledged.

The Liquity Team stated that they will pay attention and validate these values
when deploying to prevent abuse and spam.

© Coinspect 2025 16 / 18

LGOV�07
Overflow when calculating absolute values

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

V2-gov/src/utils/Math.sol:22

Description

The calculation of absolute values for integer variables reverts due to an
overflow when the input is INT256_MIN.

The int256 type can represent values from -2^255 to 2^255 - 1. The minimum
value, INT256_MIN, is -2^255. When the function attempts to compute the
absolute value of INT256_MIN, it performs the operation -int256(a), which
translates to -(-2^255). This results in 2^255, a value that exceeds the
maximum representable value for int256 (2^255 - 1), causing an integer
overflow.

function abs(int256 a) pure returns (uint256) {
 return a < 0 ? uint256(-int256(a)) : uint256(a);
}

© Coinspect 2025 17 / 18

The add and sub functions rely on the abs function to handle negative values of
b:

function add(uint256 a, int256 b) pure returns (uint256) {
 if (b < 0) {
 return a - abs(b);
 }
 return a + uint256(b);
}

function sub(uint256 a, int256 b) pure returns (uint256) {
 if (b < 0) {
 return a + abs(b);
 }
 return a - uint256(b);
}

Recommendation

Check that a is not the minimum int256 before performing the negation.

Status

Acknowledged.

Liquity acknowledges this issue and considers that the overflow is not
reachable with the circulating supply of LQTY.

Proof of Concept

function test_CoinspectAbsMinReverts() external {
 int256 absMin = type(int256).min;

 uint256 absMinVal = abs(absMin); // overflows
}

© Coinspect 2025 18 / 18

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

