

© Coinspect 2024 1 / 40

Tricorn Bridge
Source Code Review

Version: v240725 Prepared for: Stellar Development Foundation June 2024

Source Code Review

1. Executive Summary
2. Summary of Findings

2.1 Findings with pending resolution
2.2 Findings where caution is advised
2.3 Solved issues & recommendations

3. Assessment
3.1 Decentralization
3.2 Code quality & Testing

4. Fix Review Assessment
5. Detailed findings

© Coinspect 2024 2 / 40

TRI�001 � Adversaries can modify bridge parameters
to steal funds
TRI�002 � Storage unlimited growth will halt the
contract operations
TRI�003 � Insufficient authorization validation allows
adversaries to steal bridge out funds
TRI�004 � Resource exhaustion due to inefficient
storage layout
TRI�005 � Fee on transfer tokens could cause
unexpected losses to bridge
TRI�006 � Inconsistent storage TTL handling
TRI�007 � Lack of adversarial unit tests and
integration tests
TRI�008 � Backend could process duplicate Bridge
events
TRI�009 � Platform admin can force users to pay
higher fees via front-running
TRI�010 � Unsupported uint256 token value bridge
operation
TRI�011 � Bridge-in operations do not support high
value amounts due to integer overflow
TRI�012 � Using old Stellar Soroban SDK version
TRI�013 � Attempting to parse non-existing nonce
from BridgeOutEvent event
TRI�014 � Bridge-in transfer event does not consider
the commission in the amount

6. Disclaimer

© Coinspect 2024 3 / 40

1. Executive Summary
In April 2024, Boosty Labs engaged Coinspect to conduct a security source code
review for the Stellar Soroban integration with the Tricorn Bridge. The objective
was to evaluate the security of the Stellar Soroban contracts and their integration
into Tricorn's Golang backend.

Solved Caution Advised Resolution Pending

High
3

High
0

High
0

Medium
1

Medium
4

Medium
1

Low
0

Low
1

Low
0

No Risk
3

No Risk
1

No Risk
0

Total

7
Total

6
Total

1

Coinspect's analysis identified 3 high-risk vulnerabilities, one of which allows a
malicious party to bypass authorization checks and override any Bridge
parameter (TRI�001). TRI�002 flags the complete stalling of the bridge and TRI�
003 allows attackers to steal user funds during bridge_out calls.

Additionally, the audit identified 6 medium-risk issues: TRI�004 highlights
inefficient layout usage, leading to higher costs. Also, the contract does not
account for tokens that have a transfer fee (TRI�005). TRI�006 refers to a poor
management of the TTL. Additionally, TRI�007 highlights the lack of adversarial
and integration testing. TRI�008 refers to wrong error handling when processing
events in the backend. And finally, TRI�009 points out the possibility of platform
administrators forcing users to pay higher fees.

https://www.coinspect.com/

© Coinspect 2024 4 / 40

Lastly, Coinspect identified 1 low-risk concern, TRI�010, highlighting an
incompatibility within the current bridge implementation and common tokens on
EVM-based chains.

© Coinspect 2024 5 / 40

2. Summary of Findings

2.1 Findings with pending resolution

These findings indicate potential risks that require some action. They must be
addressed with modifications to the codebase or an explicit acceptance as part
of the project's known security risks.

Id Title Risk

TRI�007 Lack of adversarial unit tests and integration tests Medium

2.2 Findings where caution is advised

Findings with a risk of None pose no threat, but their risk has not been fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability. Document an
implicit assumption which must be taken into account. Once acknowledged, these
are considered solved.

Id Title Risk

TRI�005 Fee on transfer tokens could cause unexpected losses
to bridge Medium

TRI�006 Inconsistent storage TTL handling Medium

TRI�008 Backend could process duplicate Bridge events Medium

TRI�009 Platform admin can force users to pay higher fees via
front-running Medium

TRI�010 Unsupported uint256 token value bridge operation Low

© Coinspect 2024 6 / 40

TRI�011 Bridge-in operations do not support high value amounts
due to integer overflow None

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

TRI�001 Adversaries can modify bridge parameters to steal
funds High

TRI�002 Storage unlimited growth will halt the contract
operations High

TRI�003 Insufficient authorization validation allows adversaries
to steal bridge out funds High

TRI�004 Resource exhaustion due to inefficient storage layout Medium

TRI�012 Using old Stellar Soroban SDK version None

TRI�013 Attempting to parse non-existing nonce from
BridgeOutEvent event None

TRI�014 Bridge-in transfer event does not consider the
commission in the amount None

© Coinspect 2024 7 / 40

3. Assessment
The scope of this engagement encompasses the Stellar Soroban smart contracts
located in the BoostyLabs/tricorn-smart-contracts GitHub repository with the
specific commit 2a77de3a5b77a5b0253e43ac1394a9806b995008. Additionally, it
includes the Tricorn bridge backend integration with Stellar, found in the
repository BoostyLabs/tricorn with the commit
6b819d74d6e2a4fad5c771770e1ed83b4ebe15a6. The files specifically included in the
scope for the latter are listed below:

1084a6595410d373cfac321de49ff5bbd0ab2ee3a701e02eb0469b95eb37ee5f
internal/contracts/stellar/signer/signer.go
56ed79f7322f490c4d22fb2e9c72ac6812b8aceb2420a466fbd8cc92cf97e398
internal/contracts/stellar/txbuilder/txbuilder.go
fdb31110e3ba8710206837d230ce58febd6abec536dc354659c7e262e5d79dd8
internal/eventparsing/stellar/event.go
bb552860b50c6ee76e8942c72fda22d88d979904bd5a2c045de19fd9ef3c7144 connectors/stellar/service.go
86ad9fe6cebbae3d00b08d5c90e323bc1f873b51ff8eb3b20359349063be1f15 connectors/stellar/loop.go
480988667581aa2524b7e86d66406ec8f42578e1f9f4624a8dffc25f1a9b7f9e
connectors/stellar/microservice/microservice.go
aad81c5cd1a3fb8272f61886556d310f20396c982a2c8e2583a2c6b0fe10a1b5 connectors/stellar/connector.go

The Tricorn bridge facilitates the transfer of tokens from a source chain to a
destination chain and offers four primary functions: bridge_in, bridge_in_burn,
bridge_out, and bridge_out_mint. The bridge_in* functions enable users to initiate
transfers from Stellar to any destination chain supported by Tricorn. Conversely,
the bridge_out functions allow the Tricorn backend to disburse funds that have
been transferred from any supported source chain to Stellar. The Stellar Soroban
bridge supports both Tricorn-managed tokens (minted/burned) and those not
managed by Tricorn. It charges a fee on the bridged amount, capped at 5% and
set by default at 1%. These fees are deducted directly from the transfer amount
rather than collected separately. This setup gives bridge administrators the
possibility to impose higher fees by front-running a bridge_in* operation (TRI-
009).

During a bridge-in operation, the contract moves funds from the user's account to
its own balance and then issues a BridgeInEvent event detailing the transaction
specifics. This event is subsequently captured by the Tricorn backend, which then
carries out a bridge-out transaction on the destination chain. The verification of
whether the actual transferred balance (amount minus bridge fees) is recorded on
the destination chain is beyond the scope of this analysis (refer to TRI-014).

3.1 Decentralization

https://github.com/BoostyLabs/tricorn-smart-contracts/tree/new-role-for-commission-withdrawal/stellar
https://github.com/BoostyLabs/tricorn/tree/dev

© Coinspect 2024 8 / 40

The bridge_in* functions should only be initiated by users after they have
received a valid signature from the Tricorn bridge backend, which serves as
approval for the transaction. Conversely, the bridge_out* functions are initiated by
a trusted administrative bridge user.

The methodology used to verify the validity of a bridge-in or bridge-out operation
was outside the scope of this project. This includes assessing whether a specific
bridge operation and its various conditions have been authorized by the bridge.
Additionally, it is important to note that the smart contracts do not check if a
contract address is on the allow-list. It is assumed by Coinspect that this
verification is handled within the backend code that authorizes a bridge_in
operation.

3.2 Code quality & Testing

The code is straightforward and comprehensible. Tests boasted a 98.04% code
coverage, which is optimal for projects of this nature. However, the code did not
include unit tests to evaluate adversarial scenarios, such as the absence of
authentication for a public function (TRI-007). Addressing this could have
potentially identified issue TRI-001 at an earlier stage. Additionally, the code
review did not reveal any integration tests, which is vital for projects involving on-
chain and off-chain software.

© Coinspect 2024 9 / 40

4. Fix Review Assessment
After the fix review, only one issue related to lack of testing (TRI-007) remained
open. Integration tests are essential for ensuring that the off-chain server interacts
correctly with the smart contract. Issues like instance and storage TTL handling
could have been detected with a comprehensive integration test suite.

Finally, Coinspect recommends moving all storage-related functions into a
separate module, outside the contract implementation. This prevents an adversary
from modifying contract-stored variables if any storage management function
mistakenly includes a pub modifier.

© Coinspect 2024 10 / 40

5. Detailed findings

TRI�001
Adversaries can modify bridge parameters
to steal funds

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

stellar/contract-bridge/src/lib.rs

Description

All the administrative functions fail to enforce proper authorization, allowing
adversaries to steal deposited commissions or deviate tokens deposits from
users by modifying bridge parameters, to name a few.

This is due to the absence of a mechanism to verify whether the platform
admin is the actual sender of the transaction. Therefore, an adversary passing

© Coinspect 2024 11 / 40

the admin address as the parameter can modify the platform signer, the
commission collector address or the commission rate. Using the
set_commission_collector function as an example:

pub fn set_commission_collector(
 env: Env,
 address: Address,
 commission_collector: Address,
) -> Result<(), BridgeError> {
 Self::check_is_admin(&env, &address)?;

let mut state: State = Self::get_state(&env)?;

state.commission_collector = commission_collector;

env.storage().instance().set(&STATE, &state);

Ok(())
}

The function checks that the parameter sent is the admin within the
check_is_admin call, but it does not verify if address authorized the call.

Recommendation

Use require_auth() to ensure that the transaction and its parameters are
actually signed by address.

Status

Fixed in commit 7d5c4886723be9b2e5f469cb19787706a60c9cd3. The
set_commission_collector function now includes a require_auth statement to
verify that the transaction is signed by the address.

© Coinspect 2024 12 / 40

TRI�002
Storage unlimited growth will halt the
contract operations

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

stellar/contract-bridge/src/lib.rs

Description

Storage can expand indefinitely, increasing operational costs and potentially
stalling the bridge contract.

Nonces are stored in a single map that grows without limits and is re-encoded
with each modification. This map is stored in the instance storage, which has
a capacity limit of 64kb.

pub struct State {
 pub default_percent: u128,
 pub default_signer: BytesN<32>,
 pub used_nonces: Map<u32, ()>,
 pub commission_by_token: Map<Address, u128>,
 pub commission_collector: Address,
}

© Coinspect 2024 13 / 40

 env.storage().instance().set(&STATE, &state);

This will elevate the operational costs of the bridge until it reaches its storage
capacity limit, making it entirely non-functional.

Recommendation

Store the used_nonces and commission_by_token values in separate variables in
persistent storage.

An alternative approach is to have a fixed size array with all the biggest used
nonces, and allow no nonce below the minimum. This flexible approach will
have a reduced cost while limiting the possibility of using old nonces.

Status

Fixed in commit 9cbe4fddaa6e7ab8b566ddfbd990bf7fc91f017c. The values
from the former State struct are now stored under separate DataKey in
persistent storage. Note however that fields crucial to the contract and not
growing over time should remain in instance storage. Since the TTL of
instance storage items is tied to the contract TTL, extending the TTL
separately would not be required for such items. Refer to the Soroban storage
documentation for additional information.

https://developers.stellar.org/docs/smart-contracts/guides/storage/use-instance

© Coinspect 2024 14 / 40

TRI�003
Insufficient authorization validation allows
adversaries to steal bridge out funds

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

stellar/contract-bridge/src/lib.rs

Description

Adversaries can divert bridge out funds to a recipient of their choice by
duplicating and front-running a legitimate bridge_out or bridge_out_mint
function call. This is due to the contract only requiring the admin to sign a
subset of the functions parameters, allowing an adversary to re-use these
signed parameters in another call with a different recipient address.

From the snippet below, note that the require_auth_for_args function call only
verifies that address signed the contract of the token to be bridged and the
amount to be bridged.

 pub fn bridge_out(
 env: Env,
 address: Address,
 token_contract: Address,

© Coinspect 2024 15 / 40

 amount: u128,
 transaction_id: u64,
 source_chain: String,
 source_address: String,
 recipient: Address,
) -> Result<(), BridgeError> {
 address.require_auth_for_args((token_contract.clone(),
amount).into_val(&env));

Self::check_is_admin(&env, &address)?;

Thus, an adversary monitoring the mempool for bridge_out calls to the Tricorn
contract could replicate the authorization tree and initiate a new bridge_out
transaction with an alternate recipient and a higher network fee, effectively
front-running the original transaction.

Note this problem is also present in the bridge_in functions, although it
cannot be directly exploited as the integrity of parameters is protected by a
signature. However, should an adversary manage to obtain an arbitrary
signature from the backend for a bridge_in operation, they could compromise
user funds using the technique outlined earlier.

Recommendation

Use the require_auth function instead, which expects all the call parameters
to be signed by the function caller.

Status

Fixed in commit 7d5c4886723be9b2e5f469cb19787706a60c9cd3. The
bridge_out, bridge_out_mint, and bridge_in functions now enforce
authentication on all parameters, ensuring that only the admin and users can
call these functions.

© Coinspect 2024 16 / 40

TRI�004
Resource exhaustion due to inefficient
storage layout

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Low
Likelihood
High

Location

stellar/contract-bridge/src/lib.rs

Description

The storage distribution wastes too many resources on storage read/write
due to the inefficient storage design.

The current storage uses one unique state for all values needed to be saved

#[contracttype]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct State {
 pub default_percent: u128,
 pub default_signer: BytesN<32>,
 pub used_nonces: Map<u32, ()>,
 pub commission_by_token: Map<Address, u128>,
 pub commission_collector: Address

© Coinspect 2024 17 / 40

This causes the entire struct to be read, decoded, modified, re-encoded and
saved during operations, instead of only the significant portion.

For example, the set_stable_comission_percent function that only needs to
modify the default_percent entry, reads all the state and re-encodes it when
saving.

 pub fn set_stable_commission_percent(
 env: Env,
 address: Address,
 stable_commission_percent: u128,
) -> Result<(), BridgeError> {
 Self::check_is_admin(&env, &address)?;

if stable_commission_percent >= MAX_STABLE_COMMISSION_PERCENT {
 return Err(BridgeError::InvalidCommissionPercent);
 }

let mut state: State = Self::get_state(&env)?;

state.default_percent = stable_commission_percent;

env.storage().instance().set(&STATE, &state);

Ok(())
 }

While the instance storage is already in memory, the proper decoding and
usage of it could be limited to the values relevant to the function.

Recommendation

Save independent values under different DataKeys.

Status

Fixed in commit with hash 9cbe4fddaa6e7ab8b566ddfbd990bf7fc91f017c.
The different fields of the State struct are now stored separately under
different storage keys.

© Coinspect 2024 18 / 40

TRI�005
Fee on transfer tokens could cause
unexpected losses to bridge

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

stellar/contract-bridge/src/lib.rs

Description

Using fee-on-transfer tokens could cause the platform to release more tokens
than received when performing the bridge out operation on the destination
chain.

This is due the platform not considering fees charged by fee-on-transfer
tokens, and emiting BridgeInEvent with the raw amount received as a
parameter instead of the actual balance received after fees.

BridgeInEvent {
 address,
 token_contract,
 amount, <-- THIS IS THE PARAMETER
 gas_commission,
 nonce,

© Coinspect 2024 19 / 40

 transaction_id,
 destination_chain,
 destination_address,
 stable_commission_percent: state.default_percent,
},

Recommendation

Use effective received balances in BridgeInEvent, instead of fixed parameters.
Alternatively, do not use tokens that charge a fee upon transfer.

Status

Acknowledged by the Tricorn bridge team.

© Coinspect 2024 20 / 40

TRI�006
Inconsistent storage TTL handling

Status

Caution Advised

Resolution

Partially Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

stellar/contract-bridge/src/lib.rs

connectors/stellar/service.go

Description

Coinspect identified several areas for improvement in the management of the
contract storage's TTL.

Firstly, the contract lacks storage TTL extension functionality (extend_ttl
function). This omission necessitates a third party to either periodically
extending the TTL or restoring the storage when it becomes archived.

Furthermore, while the in-scope Go code is programmed to restore the
storage before sending a transaction if it is archived, it fails to extend the
storage TTL. Compounding this issue, all operations involving read-only
functions from the backend code do not restore the storage if it has been
archived. Consequently, attempts to execute read-only functions, such as
get_commission_collector through GetCommissionCollector, will fail if the
storage has been archived.

© Coinspect 2024 21 / 40

Lastly, the backend code lacks the capability to determine if a token contract
is archived and to restore it if necessary. This deficiency can lead to failures in
bridge operations and the withdraw_commission function -due to the token
contract's storage being archived.

Recommendation

Extend the storage TTL in functions that require sending a transaction/writing
the ledger (not read-only).

Ensure that when read-only functions are invoked in the backend, there is a
check to confirm that the storage has not been archived, and restore it if
necessary.

When invoking functions that interact with token contracts (such as bridge_*
and withdraw_commission), ensure that the token contract storage has not
been archived, and restore it if it has.

Status

Partially fixed in commits
7d5c4886723be9b2e5f469cb19787706a60c9cd3 (off-chain server) and
0d5dd70aad1fdf110a0d9d223270dd34ed3461f3 (smart contracts). The
changes include:

Storage TTL is now extended in both write and read calls, and the
callContractMethod handles restoring any archived data.
The smart contract now includes an extend_persistent function for the
backend to periodically extend the storage TTL.

However, the extendInstanceCall function called by GetTokenBalance only
extends the bridge TTL, not the token TTL�

callMethodCallback := func(ctx context.Context)
(*txnbuild.Transaction, *txnbuild.Transaction, error) {

return service.txBuilder.BuildExtendInstanceTx(ctx,
txbuilder.InvokeHostFunctionData{

FunctionName:
service.config.ExtendInstanceMethodName,

ContractAddress:
service.config.BridgeContractAddress,

SenderAddress:
service.networkID.EncodeAddress(senderAddressResp.PublicKey),

})
}

© Coinspect 2024 22 / 40

Additionally, Coinspect could not find any code responsible for restoring the
contract instance (and its storage) if it is archived. Refer to the Stellar
Soroban documentation for more details.

https://developers.stellar.org/docs/learn/encyclopedia/storage/state-archival#example-my-contract-is-archived

© Coinspect 2024 23 / 40

TRI�007
Lack of adversarial unit tests and
integration tests

Status

Resolution Pending

Resolution

Open

Risk
Medium

Impact
High
Likelihood
Medium

Location

stellar/contract-bridge/src/test

Description

Tests, especially automated ones, act as a foundational safety net, ensuring
that the source code operates as intended and remains protected from
unintended side effects or vulnerabilities.

It is worth noting that multiple issues discovered during this project could
have been detected with a proper test suite in place.

The project lacks tests for adversarial scenarios. For example, tests designed
to detect unauthorized access to modify contract parameters could have
identified issue TRI-001.

Automated tests, in particular, act as a critical safety net, ensuring that the
code functions as intended and remains protected against unexpected side
effects or vulnerabilities.

© Coinspect 2024 24 / 40

Recommendation

Add more tests to consider adversarial situations such as unauthenticated or
unauthorized actions (eg. modifying the commission collector with an
unauthorized address).

Add comprehensive end-to-end integration tests that cover bridge_in
operations and their required authorization signatures. These tests should also
assess the parsing of events generated by these bridge_in operations and the
subsequent generation of bridge_out transactions.

Consider using the try_... statement within an assertion instead of declaring
the expected panic error. This allows controlling with better precision the line
where the error is expected.

Status

Open

© Coinspect 2024 25 / 40

TRI�008
Backend could process duplicate Bridge
events

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Medium

Location

connectors/stellar/loop.go

Description

The event retrieval logic may cause the backend to reprocess duplicate
events. Reprocessing an event might result in the backend incorrectly
releasing more funds than necessary.

The snippet below is from the ReadRealtimeEvents function. The readEvents
function begins by reading and processing events from currentLedger or
newer, and returns the ledger of the last event read. It then resumes reading
and processing from this ledger, creating a risk of reprocessing the most
recent events.

currentLedger := lastLedgerResp.Sequence -
service.config.EventsReadingGap

looper :=
thelooper.NewLoop(time.Duration(service.config.EventsReadingIntervalInM

© Coinspect 2024 26 / 40

illiseconds))
defer looper.Close()

err = looper.Run(context2.JoinContext(ctx, service.gctx), func(ctx
context.Context) error {

lastLedgerResp, err =
service.sorobanClient.GetLatestLedger(ctx)

if err != nil {
return err

}

if currentLedger >= lastLedgerResp.Sequence {
return nil

}

previousLedger := currentLedger
currentLedger, err = service.readEvents(ctx,

currentLedger, eventsChan)
if err != nil {

return err
}

if previousLedger == currentLedger {
currentLedger++

}

return nil
})

Be aware that any code responsible for de-duplicating processed events falls
outside the scope of this engagement and was not reviewed by Coinspect

Recommendation

Ensure that events are fully retrieved on a per-ledger basis, meaning all events
for a specific ledger are retrieved atomically. If it's not possible to obtain all
events for a given ledger height, discard the current events and attempt
retrieval again later.

Implement mechanisms to prevent the reprocessing of duplicate events.

Consider decoupling the logic for reading ledger events from the events
processing logic to avoid processing errors impacting the tracking of events
retrieved from the chain.

Status

Acknowledged. The Tricorn team mentioned they already have functionality to
process received events and filter out already processed ones, but this code

© Coinspect 2024 27 / 40

is located in another part of their system and was not included in the current
engagement's scope.

© Coinspect 2024 28 / 40

TRI�009
Platform admin can force users to pay
higher fees via front-running

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

stellar/contract-bridge/src/lib.rs

Description

The smart contract administrator can force users to pay a higher bridge fee
by front-running a bridge_in operation.

This problem arises because the bridge_in functions do not allow users to
specify the maximum fee they are willing to pay, and fees are deducted from
the bridged amount instead of being paid separately. Therefore, a malicious
admin could front-run a bridge_in function by calling
set_stable_commission_percent and passing a higher fee percentage.

It's important to note that the potential severity of this issue is mitigated by a
constraint that the commission cannot exceed or match the
MAX_STABLE_COMMISSION_PERCENT, which is set at 5% of the funds being bridged.

© Coinspect 2024 29 / 40

Recommendation

Allow users to provide the maximum bridge fee they are willing to pay for
bridge_in operations.

Status

Acknowledged by the Tricorn bridge team.

© Coinspect 2024 30 / 40

TRI�010
Unsupported uint256 token value bridge
operation

Status

Caution Advised

Resolution

Partially Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Description

Bridge transactions from chains that support uint256 types, like those EVM-
compatible, to Stellar/Soroban might to fail due to incompatible amount
types. For instance, the Solidity code for BridgeInParams uses a uint256
amount, while Soroban employs u128, which has half the capacity.

Below is the BridgeInParams struct, which corresponds to the Solidity code
(not covered in this engagement). Note that the amount is defined as a uint256
type.

struct BridgeInParams {
 address token;
 uint256 amount;
 uint256 gasCommission;
 string destinationChain;
 string destinationAddress;
 uint256 deadline;
 uint256 nonce;

© Coinspect 2024 31 / 40

 uint256 transactionId;
}

On the other hand, the bridge_out function only on Soroban allows an u128
value.

pub fn bridge_out(
 env: Env,
 address: Address,
 token_contract: Address,
 amount: u128,
 transaction_id: u64,
 source_chain: String,
 source_address: String,
 recipient: Address,
)

The impact of this issue varies based on whether mechanisms are in place on
the source chains to unlock or revert a bridge operation if there's an
incompatibility, or whether there is a cast from u256 to u128 somewhere in
the code. It could result in tokens being locked in the source contract or the
loss of gas fees. The likelihood of this occurring is considered low, as bridge
administrators can mitigate these incompatibilities by not supporting
malicious tokens or those with a high number of decimals.

Recommendation

Do not allow bridge operations that could trigger this incompatibility.
Additionally, develop and implement a mechanism to quickly unlock tokens if
this issue occurs. Document this limitation and ensure that users are informed.

Status

Partially fixed in commit 2deaad655026859968fa5008e16acc2ce9e25cd0.
The bridge does not provide its signature for bridge-in operations with values
higher than u128. However, since Soroban tokens use int128 values, this could
still cause an incompatibility. Coinspect recommends limiting bridge
operations to int128 values instead.

© Coinspect 2024 32 / 40

TRI�011
Bridge-in operations do not support high
value amounts due to integer overflow

Status

Caution Advised

Resolution

Open

Risk
None

Impact
Recommendation
Likelihood
_

Location

stellar/contract-bridge/src/lib.rs

Description

An integer overflow in the bridge commission calculation blocks high-value
bridge-in operations. This occurs when two unbounded u128 integers are
multiplied in the get_total_commission function, as illustrated below:

amount * self.default_percent / 10_000

To generate such overflow, Coinspect prepared a test using an extremely high
number (u128::MAX). This test triggered a panic, displaying the error message
caught panic 'attempt to multiply with overflow'.

fn test_really_high_commission_overflow() {
 let env = Env::default();
 env.mock_all_auths();

© Coinspect 2024 33 / 40

let contract_id = env.register_contract(None, BridgeContract);
 let client = BridgeContractClient::new(&env, &contract_id);

let sender = Address::generate(&env);
 client.set_admin(&sender);

let signer = generate_keypair();
 let signer_public_key: BytesN<32> = signer_public_key(&env,
&signer);
 client.set_signer(&sender, &signer_public_key);

let gas_commission = 2;
 let max_u128 = u128::MAX;
 let get_total_commission =
 client.get_total_commission(&max_u128, &gas_commission);

println!("get_total_commission: {:#?}", get_total_commission);
}

It is important to note that the likelihood of exploiting this issue is low, as it
would require an unusually high amount of bridge_in tokens, which are only
allowed by the platform administrators. Moreover, the impact is minimal
because no funds are lost, and the issue can be resolved by conducting
smaller bridge transactions.

Recommendation

Consider utilizing a non-overflowing algorithm.

Status

Open. The order of operations still allow a potential overflow:

let commission =
amount.checked_mul(default_percent)?.checked_div(10_000)?;

Even though checked operations are now used, that does not prevent a
bridge_in operation from panicking due to overflow. Consider using the
soroban_decimal library to apply percentages.

© Coinspect 2024 34 / 40

TRI�012
Using old Stellar Soroban SDK version

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

stellar/Cargo.toml

Description

An older dependency is more likely to contain known security issues that have
been discovered and exploited over time. Additionally, it can also impact the
performance of the contracts as they may lack the optimizations and
enhancements that are typically introduced in newer versions, potentially
leading to higher fees.

Currently, the project uses the Soroban SDK version 20.0.0.

Recommendation

Use the latest Soroban SDK version, 20.5.0.

© Coinspect 2024 35 / 40

Status

Fixed in commit with hash
7d5c4886723be9b2e5f469cb19787706a60c9cd3. The project now uses
the Soroban SDK version 20.5.0.

© Coinspect 2024 36 / 40

TRI�013
Attempting to parse non-existing nonce
from BridgeOutEvent event

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

internal/eventparsing/stellar/event.go

Description

The ParseEvent function aims to parse a contract's BridgeOutEvent event into a
bridgeOutFieldsMap map, as illustrated below. However, since the
BridgeOutEvent lacks a nonce field, the nonce field in bridgeOutFieldsMap
objects will be nil.

Below, a snippet of the ParseEvent function is displayed:

case BridgeOutEventKey, BridgeOutMintEventKey:
 return event, event.parse(data, bridgeOutFieldsMap)

Additionally, the definition of bridgeOutFieldsMap, which contains a nonce
field:

© Coinspect 2024 37 / 40

var bridgeOutFieldsMap = map[string]string{
"token_contract": eventFieldNameTokenContractAddress,
"amount": eventFieldNameAmount,
"nonce": eventFieldNameNonce,
"transaction_id": eventFieldNameTransactionID,
"source_chain": eventFieldNameChainName,
"source_address": eventFieldNameChainAddress,
"recipient": eventFieldNameUserWalletAddress,

}

Finally, the BridgeOutEvent event that is emitted by the contract, which does
not include a nonce value.

env.events().publish(
 (&STATE, BRIDGE_OUT_EVENT_KEY),
 BridgeOutEvent {
 address,
 token_contract,
 amount,
 transaction_id,
 source_chain,
 source_address,
 recipient,
 },
);

Coinspect advises further evaluation of the impact of this discrepancy since
the functionality potentially affected by this mismatch falls outside the scope
of this engagement.

Recommendation

Since bridge_out functions do not receive any nonce as parameter, consider
deleting the the nonce value from the bridgeOutFieldsMap.

Status

Fixed in commit with hash
9abe856b6cb388d302bfd00c481667946f5c70cf. The nonce field was
removed from the bridgeOutFieldsMap map.

© Coinspect 2024 38 / 40

TRI�014
Bridge-in transfer event does not consider
the commission in the amount

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

stellar/contract-bridge/src/lib.rs

Description

The bridge_in functions include the entire bridged amount in the
BridgeInEvent event, without deducting the bridge commission. If not
managed correctly, the bridge on the destination chain could release this full
amount, leading to operational losses for the bridge by failing to secure its
commission.

Below is the bridge_in function and the amount parameter. Note that this same
parameter appears in the BridgeInEvent event.

pub fn bridge_in(
 ...
 amount: u128,
 ...
) -> Result<(), BridgeError> {

© Coinspect 2024 39 / 40

env.events().publish(
 (&STATE, BRIDGE_IN_EVENT_KEY),
 BridgeInEvent {
 address,
 token_contract,
 amount,
 gas_commission,
 nonce,
 transaction_id,
 destination_chain,
 destination_address,
 stable_commission_percent: state.default_percent,
 },

Recommendation

Make sure that the bridge commission is discounted from the amount in the
destination chain before performing the bridge_out operation. Otherwise,
discount the bridge commission from the amount before emitting the event.

Status

Acknowledged by the Tricorn bridge team.

© Coinspect 2024 40 / 40

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

