
Tari
Base Layer

Security Assessment

© Coinspect 2024 1 / 130

Tari Base Layer
Security Assessment

Version: v240115 Prepared for: Tari January 2024

Base Layer Audit

Executive Summary

Summary of Findings

Solved issues & recommendations

Assessment and Scope

Audit Process

Review of Fixes

Overview

Detailed Findings

Disclaimer

© Coinspect 2024 2 / 130

Executive Summary

In July 2023, Tari engaged Coinspect to perform an audit of their base layer, the Tari
Base Layer. This engagement included an audit of their L1 node as well as the Tari
Wallet. The engagement lasted for a total of 15 weeks.

The following issues were identified:

Solved Caution Advised Resolution Pending

High

22
High

0
High

0

Medium

9
Medium

0
Medium

0

Low

10
Low

0
Low

0

No Risk

9
No Risk

0
No Risk

0

Total

50
Total

0
Total

0

Auditors found critical issues in most areas of the codebase, which led to 44% of the
identified vulnerabilities being of HIGH severity. The two most important categories of
findings were those related to proof of work checks (TARI-005, TARI-006, TARI-008,
TARI-012) and arbitrarily triggered denial of services (TARI-009, TARI-010, TARI-
014, TARI-021 and others). These issues would have resulted in double spends if
leveraged by attackers.

Many other types of issues and bugs were identified: miners could be delayed by
attackers to win an unfair advantage (TARI-001, TARI-002), the wallet software is

© Coinspect 2024 3 / 130

vulnerable to denial of services (TARI-024), nodes can waste resources validating
attacker-crafted data (TARI-003, TARI-004, TARI-007, TARI-015).

Coinspect also found exploitable weaknesses in Tari's dependencies (TARI-028, TARI-
030). These were shared with the Tari team and disclosed to the maintainers.

All issues were correctly addressed by Tari's team and are now mitigated.

© Coinspect 2024 4 / 130

Summary of Findings

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

TARI-001 Block producer can delay competing miners High

TARI-002 Attackers can prevent block processing High

TARI-005
Attackers can mine several blocks at once by abusing

ExtraField data High

TARI-006
Attackers can mine several blocks at once by using multiple

Monero coinbase transactions High

TARI-008 Attackers can create the same block with different hashes High

TARI-009 Attackers can halt long-syncing by inflating block headers High

TARI-010
Attackers can halt long-sync by appending trailing data to

Proof of Work buffer High

TARI-011
Attackers can crash nodes by manipulating proof of work

data High

TARI-012 Proof of work can be copy-pasted High

TARI-013 Attackers can force sync on a peer eternally High

TARI-014 Miner can ban competition High

TARI-016 Attackers can halt synchronization High

© Coinspect 2024 5 / 130

TARI-019 Attackers can crash a node by forcing over-allocation High

TARI-021 Attackers can crash nodes by broadcasting JOIN messages High

TARI-022
Attackers can crash miners by sending a block with a high

coinbase fee High

TARI-028
Attackers can crash the node with a malicious Monero

coinbase High

TARI-030 Peer can crash horizon-syncing node with a crafted bitmap High

TARI-031 Attackers can crash the node with a script High

TARI-032 Attackers can crash node with a mempool message High

TARI-035
Attackers can crash the node by sending transaction with

big fee High

TARI-038 Miner can force peers to sync High

TARI-049 Attackers can crash whole node by panicking a single thread High

TARI-003 Nodes waste resources validating fake orphan blocks Medium

TARI-004 Attackers can spam mempool at no cost Medium

TARI-017 Attackers can avoid ban on horizon sync Medium

TARI-023
Attackers can observe and manipulate gRPC requests to

wallets Medium

TARI-024 Attackers can crash the wallet via the gRPC service Medium

TARI-026 Attackers can hold the peer-stream open indefinitely Medium

TARI-029 Attackers can crash the node with a single gRPC request Medium

TARI-042
Attackers can hold the DB write lock with low difficulty

blocks Medium

TARI-044 Attackers can flood victim with peer addresses Medium

TARI-007 Malicious script makes validators waste computations Low

© Coinspect 2024 6 / 130

TARI-015 Known bad blocks are validated Low

TARI-020
Default output selection criteria can be abused to increase

the sender's fee Low

TARI-025 Wallet username vulnerable to timing attacks Low

TARI-027
Overflow when computing accumulated difficulty will

eventually halt mining Low

TARI-034 Wrong test for double spend Low

TARI-039 Wallet reports stale balance results with no warnings Low

TARI-041 Attackers can continuously spam low difficulty blocks Low

TARI-045 Some errors are not obscured by gRPC server Low

TARI-050 Privacy compromise fetching code template repository URL Low

TARI-018 Consensus is dependent on platform None

TARI-033
Dependencies that depend on wrap-on-overflow will crash

Tari None

TARI-036 Overflows can potentially crash the node None

TARI-037 Sync is always done with a single peer None

TARI-040
DirectOnly wallets report the transaction being sent when

it is not None

TARI-043
Wallet can minimize trust with base node by requesting

proof of work None

TARI-046 Not possible to disable gRPC methods None

TARI-047 Inaccuracy on pruning on RFC-0140 None

TARI-048
No warning when using weak or empty password on

account recovery None

© Coinspect 2024 7 / 130

Assessment and Scope

The audit started on July 3, 2023 and was conducted on the commit
87c070305951152c62a0179e13fadc55065cc318 tag v0.51.0-pre.4 of the
https://github.com/tari-project/tari repository.

On September 4, 2023, Tari provided a new commit for Coinspect to review. The
commit intended to fix some of the vulnerabilities reported by Coinspect and also
contained fixes for other bugs found by the Tari team. This new commit is
63f61ebc2639730060d45ed63d0b839b0b321565 tag 0.52.0-pre.1 of the
https://github.com/tari-project/tari repository.

The audit was focused on the following folders:

/base-layer/core/consensus
/base-layer/core/proof_of_work
/base-layer/core/transactions
/base-layer/core/validation
/base-layer/core/mempool
/base-layer/wallet/
/base-layer/wallet_ffi
/base-layer/tari_script/
/base-layer/key_manager/
/comms/dht/src/crypt.rs
/comms/dht/src/outbound/
/comms/dht/src/inbound/
/comms/core/
/base-layer/core/base_node
/base-layer/core/blocks
/base-layer/core/chain_storage
/base-layer/core/covenants
/base-layer/core/proto

Audit Process

Coinspect followed its standard audit process for L1 layers, spending the first weeks
understanding the threats and risks in the Tari threat model and its differences with
other blockchains to better identify vulnerabilities. This was an ongoing process during
the whole audit which culminated in a diagram of Tari's threat model which was shared
with the Tari team at the end of the audit.

https://github.com/tari-project/tari
https://github.com/tari-project/tari

© Coinspect 2024 8 / 130

Base Node

handle_incoming_block
Duplicate check

Banned check

Min difficulty check

Timeout

Ban

txs by excess sig

request full block

Mempool

Add Block

Timeout

Duplicate

Find parent
block

Block

Block connects

True Orphan

Banned check

Version check

Height check

Timestamp check

PoW Data check

PoW Check

Reorganize chain

Fetch new best
fork

if block forms new best chain

Reorg chainfor each new block, validate full

TX Metadata

No duplicate
i

Basic Input Checks

Coinbase check

Kernel signatures
check

Version check

Script checks

Type checks

Covenant checks

Weight checks

Sort & duplicate
check

Kernel lock height
check

Kernel sum check

Range proof check

Total burned check

MMR Roots Check

Legend

submit_transaction

Transaction submitter
Spammer

Mempool Minimum
F

Weight checks

Basic input checks

Peer Manager

retrieve_by_excess_sig

Memopol Peer

Join/Discovery
 Messages

Peer
Spammer

Public key
h ll

Address limit

Ban

PeerChainMetadata

Headers and full blocks are
fully validated before insertion

Sync State
Machine

PoW announcement

Delayer

Block sync

Full blocks

Horizon Sync

Better PoW check

Timeout

Ban

Block Security Controls

Headers

Competing miner

Comms Handler

Reconciliation

Handle
Message

Hydration

Non-pruned
UTXO

Optional path. Might or not
happen depending on certain

conditions.

Mandatory flow of information

Spammer
Printer

Invalid block

Unauthorized
Delayer

Double spender

Coinspect's threat model for Tari. Full resolution.

By Week 6, auditors had discovered 11 high severity issues on the platform. Due to
the amount, severity and nature of the issues Coinspect communicated to Tari that the
best path forward in order to minimize risk was to let Tari work on the issues found,
provide a new commit and allocate time of the audit to re-review these components.

Tari decided to accept the proposal and extend the audit by two weeks.

Week 9 was set as the last one where auditors would review the original commit. By
Week 10, Tari had a new commit-to-review and auditors used it moving forward.

The issues reported here from TARI-001 to TARI-031 were found in the original
commit.

Starting from Week 11, Tari and Coinspect agreed that details about unconfirmed
overflows or underflows would be collected in an INFO issue.

Review of Fixes

Coinspect started reviewing Tari's fixes on November 10, 2023. This review was
conducted on the commit 14e334aff346aae8a081599488135c905c2c1f84 of the
https://github.com/tari-project/tari repository on the audit-fixes branch.

The changes in the codebase up to 14e334aff346aae8a081599488135c905c2c1f84 intend
to fix vulnerabilities which were not addressed during the audit itself, except for the fix
TARI-023 which was delayed to a later commit. Coinspect also found that TARI-032
was incorrectly mitigated.

https://coinspect.com/assets/images/blog/tari-tm.png
https://github.com/tari-project/tari

© Coinspect 2024 9 / 130

On November 30, Tari provided a new commit
4be85e0f0d778ee813fa41df927cfcac79a3f1db on the same audit-fixes branch. This
commit has solved the incomplete fix to TARI-032 and partially addressed the
problems outlined in TARI-023. On December 5, a new commit
17676ce8f90b0f2aa413218cc72c21c587293d32 was shared with Coinspect, which aimed
to totally remedy TARI-023. To fully asses the fix of this issue, Coinspect also
considered some commits on the development branch, particularly commit
b80f7e366b14e10b3fb0e9835fb76dd5596d0cf8. The development branch was not audited,
it was only reviewed in relation to TARI-023.

Overview

Tari aims to be the most useful, decentralized platform that empowers anyone to
create digitally scarce things people love. It is a new cryptocurrency implementation
inspired in Monero and the Mimblewimble protocol. The implementation is
programmed in Rust from scratch.

The blockchain operates on a UTXO-based structure with private transactions,
ensuring confidentiality by hiding addresses and amounts. Transaction aggregation
facilitates a compact blockchain, and its history is prunable, ensuring efficient storage
while maintaining the currency's total supply verification.

Two synchronization methods are available:

Block sync, which downloads and verifies the full blocks
Horizon sync, which only downloads information necessary to assert no unintended
inflation happened

Node operators are able to choose how many full blocks should be kept before they
are pruned.

The system adopts the Nakamoto Consensus via a hybrid proof of work mechanism,
integrating Monero's RandomX merge mining with Sha3x proof of work. These two
algorithms are configured with different difficulty targets and the aim is for a 60/40
block distribution on each mining strategy and a two-minute block interval.

UTXOs are accessible either through showing ownership of the excess blinding factor
(like in Mimblewimble) or via TariScript, a system akin to Bitcoin's Script. Tari also
introduces covenants to define spending conditions.

A significant part of the threat model of Tari is its wallet. Unlike many traditional
blockchains, it plays a crucial role due to the potential interactivity of transactions,

https://github.com/mimblewimble/grin/blob/master/doc/intro.md

© Coinspect 2024 10 / 130

necessitating negotiation between online peers. The wallet interfaces with the node
through an RPC system.

Tari offers in-depth documentation and rationale of their design decisions organized
mostly in the form of RFC documents.

During Coinspect's assessment, two components - merged mining and synchronization
processes - emerged as areas of concern due to the severity and number of issues
identified.

The merged mining implementation was initially vulnerable to several attacks: it
allowed miners and intermediate nodes to skip the PoW, modify headers and reuse
PoW, inflate headers to perform denial of service or trigger a panic crashing the node.
These issues led to a changes in the design and implementation of the RandomX PoW.

The synchronization processes were notably vulnerable to several DoS scenarios.
These vulnerabilities were accentuated by the fact that nodes synchronize with only
one peer and the ease with which synchronization status can be manipulated.

Coinspect also noted that two project-wide policies were problematic:

1. Panic on overflow configuration
2. Unhandled panics leading to program halt

The panic-on-overflow configuration is not traditional for Rust-based projects, and
while it has some benefits, the codebase performed unsafe math operations ignoring
this policy, which led to several denial-of-service issues reported via over or
underflows.

The handling of panics was considered risky enough so merit its own issue described in
TARI-049. This was combined with the already mentioned panic-on-overflow policy
with severe results, as it meant that a crash on a single thread resulted in a crash of
the whole process.

Another point leveraged in many issues is the decision to use global locks for multiple
operations. This allowed several types of attacks where miners could take advantages
that are similar to selfish mining, but with greater impact.

During the audit process, Tari team showed to be open to communication, promptly
addressing emerging issues as they arose. The team also showed proactivity
identifying issues similar to those reported in highlighted areas of the codebase.

https://rfc.tari.com/

© Coinspect 2024 11 / 130

Detailed Findings

TARI-001

Block producer can delay competing miners

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/comms_interface/inbound_handlers.rs

Description

A miner that produces a new best block can deliberately slow down their network
communication, forcefully acquiring the new block lock of peers by up to two
minutes.

The full impact of this attack comes from a miner leveraging this to attack other
miners. An evil miner using this attack would gain unfair advantage over other
miners and is encouraged to exploit it.

© Coinspect 2024 12 / 130

The attack works as follows: when a miner finds a new block, they propagate it to
the network. Receiving nodes process the new block message in the
handle_block_message method of the InboundNodeCommsHandler.

It is important to note that only a single new block message can be processed at a
time:

 // Only a single block request can complete at a time.
 // As multiple NewBlock requests arrive from propagation, this
semaphore prevents multiple requests to nodes for
 // the same full block. The first request that succeeds will
stop the node from requesting the block from any
 // other node (block_exists is true).
 // Arc clone to satisfy the borrow checker
 let semaphore = self.new_block_request_semaphore.clone();
 let _permit = semaphore.acquire().await.unwrap();

After the lock is acquired, receivers call reconcile_block. This method makes up
to two requests to the sender:

1. FetchMempoolTransactionsByExcessSigs
2. GetBlockFromAllChains

It is important to note that a miner can force both requests to be made: the miner
must add a transaction to the block that they have not broadcasted to the network
to force the FetchMempoolTransactionsByExcessSigs to be made and then they
must answer that they have not_found that transaction, forcing the receiver to
request the whole block.

Joining all of these facts together, we can see that a miner can force other nodes to
stop listening to new block requests for about two minutes by following these
steps:

1. Add a transaction to the miner's mempool that will not be broadcasted
2. Find a new valid block for the chain
3. Broadcast this block to peers
4. Wait 59 seconds
5. Respond to FetchMempoolTransactionsByExcessSigs with some transaction in

the not_found array
6. Wait 59 seconds
7. Respond to GetBlockFromAllChains with the full, valid block.

The value 59 seconds is derived from the fact that we want to avoid timing out,
specially for the GetBlockFromAllChains method as it leads to a ban at no
particular advantage for the attacker. The default timeout is 60 seconds.

© Coinspect 2024 13 / 130

Note that Tari average block time is 120 seconds. So we were able to lock block
propagation on all our competing miners for almost the full average block time.

Recommendation

There should be no lock when receiving a block from the network.

Status

Fixed. The code can now process several concurrent blocks from the network as
long as they satisfy a MIN_DIFFICULTY (see Status on TARI-003). This prevents an
attacker from executing this attack with any serious consequence.

© Coinspect 2024 14 / 130

TARI-002

Attackers can prevent block processing

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/comms_interface/inbound_handlers.rs

Description

Anyone can deliberately slow down their peers, forcefully acquiring the new block
lock of peers by up to a minute. The attack is similar to TARI-001 in nature, but
leverages another path which allows an attacker with no mining power to execute
it, causing victim nodes to be unable to receive new blocks from the network. The
attacker node does not get banned or otherwise penalized by the victim node.

As with TARI-001, the attacker's objective is to acquire the receive block lock of
the victim's node. In this variant, the attacker simply sends an orphan block with
invalid proof of work.

The goal is to trigger the following if condition in
InboundNodeCommsHandlers::reconcile_block:

© Coinspect 2024 15 / 130

 if header.prev_hash != *current_meta.best_block() {

Once we reached this condition, the attacker uses the same strategy as in TARI-
001: to force the victim to request the full block, they insert an unknown
transaction in the invalid block. This triggers a request to the attacker which can
arbitrarily halt for up to 60 seconds.

let block = self.request_full_block_from_peer(source_peer,
block_hash).await?;

At this point, the attacker has succeeded. They need only to set a delay in their
response. The attacker can avoid being banned because they are inserting a true
orphan: proof of work validations are not done on orphans as they are context
dependent (see TARI-003).

The attacker has an alternative to sending a true orphan. They can simply respond
Trash, an unexpected API response, after the delay. This is the strategy Coinspect
auditors used for their Proof of Concept:

 NodeCommsRequest::GetBlockFromAllChains(hash) => {
 warn!("[COIN] [ATTACKER] Victim has requested block.
Wait 55s before giving it.");
 tokio::time::sleep(Duration::from_secs(55)).await;
 let block_hex = hash.to_hex();
 debug!(
 target: LOG_TARGET,
 "A peer has requested a block with hash {}",
block_hex
);
 warn!("[COIN] [ATTACKER] Time has passed. Now send
trash as response");
 return Ok(NodeCommsResponse::Trash("!! TRASH
!!".to_owned()));
 },

Recommendation

As with TARI-001, the main fix for this issue would be to remove the lock for new
blocks.

Furthermore: store only the orphan header and request the full block only when
the parent is known.

To prevent trash responses, treat UnexpectedAPIResponse errors as malicious and
ban peers sending them.

© Coinspect 2024 16 / 130

Status

Fixed. See Status of TARI-001.

© Coinspect 2024 17 / 130

TARI-003

Nodes waste resources validating fake
orphan blocks

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
High

Location

base_layer/core/src/base_node/comms_interface/inbound_handlers.rs

Description

An attacker can send a fake orphan block with invalid proof of work. The victim
node will perform validations on it, including range proofs, therefore wasting
computing resources. Attackers are not penalized for this action.

When receiving a new block, a node will first check if they know the block's parent.
If they do not, they will consider it an orphan. Only internal consistency validations
can be performed on an orphan block, as its relationship with the chain is not
known when it is received.

These consistency validations are located in
AggregateBodyInternalConsistencyValidator::validate and they include

© Coinspect 2024 18 / 130

validations of the range proofs, script execution, covenants and kernel signatures;
all potentially expensive computations.

This issue can be combined with TARI-002, resulting in a combination of their
impacts: the victim's lock is acquired and computation is wasted.

Recommendation

To prevent wasted computations on true orphans, delay all orphan validation until
their parents are known.

Status

Fixed. The minimum difficulty is now updated according to the last known target.

Previous feedback

This issue was only Partially Fixed on commit
63f61ebc2639730060d45ed63d0b839b0b321565. For that commit, Coinspect gave the
following feedback:

Tari implemented a minimum difficulty threshold that all blocks must achieve in
order to be processed by the receiver. Nevertheless, this difficulty is constant:

 async fn check_min_block_difficulty(&self, new_block: &NewBlock) ->
Result<(), CommsInterfaceError> {
 let constants =
self.consensus_manager.consensus_constants(new_block.header.height);
 let min_difficulty =
constants.min_pow_difficulty(new_block.header.pow.pow_algo);

As the network hashrate increases, this minimum difficulty will become
increasingly easy to achieve relative to the amount of work present in the network.

To fully mitigate risk, there are several approaches that can be implemented. The
minimum difficulty strategy can be kept, but updated the minimum difficulty value
according to the last known target and how LWMA-1 changes. This, plus adding a
maximum distance from the tip to the block to keep difficulty values reasonable,
would make too expensive for an attacker to exploit the bug only to make a victim
waste resources.

Other strategies are possible:

© Coinspect 2024 19 / 130

1. Tari is also considering not receiving orphan blocks at all. This is the
strongest protection possible, but the network looses the ability to
optimistically receive blocks out of order.

2. Orphans could be validated only when their parents are known and not
before. An attacker could send orphan headers that are never connected, but
in this case the node would waste no resources validating them until it is
absolutely required. This, together with a light MIN_DIFFICULTY to prevent
spam, also mitigates the risk.

© Coinspect 2024 20 / 130

TARI-004

Attackers can spam mempool at no cost

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
High

Location

base_layer/core/src/mempool/service/inbound_handlers.rs

Description

Attackers can waste victim's resources and bandwidth by sending a zero-fee
transactions to the victim's mempool. The transaction will get validated, added to
the mempool and broadcasted.

Even though the transaction will likely not get included in a block as long as there
are fee-paying transactions due to priority-policies, the attacker successfully made
the victim node process and broadcast a non-paying transaction. It is worth noting
that the code has a MINIMUN_TRANSACTION_FEE, but it's present as part of the wallet
protocol to create a transaction.

 if fee < Fee::MINIMUM_TRANSACTION_FEE {
 return Err(TPE::ValidationError("Fee is less than the

© Coinspect 2024 21 / 130

minimum".into()));
 }

An attacker can forge a transaction that does not respect these limits.

Recommendation

Enforce a minimum fee at the mempool level. This fee does not need to be part of
consensus: each operator could decide what minimum fee makes sense for their
node. This would be similar to Bitcoin's minimum relay fee.

Status

Fixed. The mempool now checks for a fee first before validating the transaction. It
is worth noting that an attacker can still present an invalid transaction that seems
to pay a fee but is found to be invalid after validation.

The impact of said attack is minimal and lacks a clear incentive, so the risk is
negligible.

Previous feedback

This issue was only Partially Fixed on commit
63f61ebc2639730060d45ed63d0b839b0b321565. For that commit, Coinspect gave the
following feedback:

The mempool now has logic to prevent storing a transaction if the fee is too low.
Nevertheless, this is only checked after validations on the transaction have been
made. This leaves the door open for attackers to freely use node resources by
spamming it with low-fee but heavy-on-validate transactions. Coinspect
recommends making sure node operators are aware of this possibility and mitigate
this threat on another layer: most operators should require API keys to access
their RPC and invalidate keys that behave badly. Operators that need to keep their
RPC fully public can implement strong monitoring for these methods and attempt
to block misbehaving users.

https://btcinformation.org/en/glossary/minimum-relay-fee

© Coinspect 2024 22 / 130

TARI-005

Attackers can mine several blocks at once by
abusing ExtraField data

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/helpers.rs

Description

A miner can mine different blocks at the same height concurrently at no cost by
committing to several Tari blocks in a single Monero block. This means that miners
must not choose a fork and instead can mine on all forks available, including
private forks. This in turn makes double spending much more feasible. This is
somewhat similar to the nothing at stake design issue found on some early proof
of stake implementations.

The exploiter of the issue is a merge-miner. Tari allows blocks to be merged-
mined along Monero blocks, as described in RFC-0132. For this issue, it is
important to keep in mind that a commitment to a Tari block must be put into the
ExtraField of the coinbase transaction.

https://rfc.tari.com/RFC-0132_Merge_Mining_Monero.html

© Coinspect 2024 23 / 130

The problem lies in the verify_header method:

fn verify_header(header: &BlockHeader) -> Result<MoneroPowData,
MergeMineError> {
 let monero_data = MoneroPowData::from_header(header)?;
 let expected_merge_mining_hash = header.mining_hash();
 let extra_field =
ExtraField::try_parse(&monero_data.coinbase_tx.prefix.extra)
 .map_err(|_| MergeMineError::DeserializeError("Invalid extra
field".to_string()))?;
 // Check that the Tari MM hash is found in the monero coinbase
transaction
 let is_found = extra_field.0.iter().any(|item| match item {
 SubField::MergeMining(Some(depth), merge_mining_hash) => {
 depth == &VarInt(0) && merge_mining_hash.as_bytes() ==
expected_merge_mining_hash.as_slice()
 },
 _ => false,
 });

 if !is_found {
 return Err(MergeMineError::ValidationError(
 "Expected merge mining tag was not found in Monero coinbase
transaction".to_string(),
));
 }

 if !monero_data.is_valid_merkle_root() {
 return Err(MergeMineError::InvalidMerkleRoot);
 }

 Ok(monero_data)
}

Note that the is_found variable will be true if any of the MergedMining subfields
have depth zero (set by the miner) and the merge_mining_hash is equal to the
expected_merged_mining_hash. This allows a miner puts several commitments to
Tari blocks in the same Monero block. This means they can claim to have done
work on several Tari blocks when they only did work on a single Minero block.

Recommendation

There should be at most one valid merge_mining_hash in the Monero block.
Alternatively, if several merge_mining_hash fields are needed to support Monero
blocks that merge mine with other blockchains as well, consider adding an
identifier prefix to valid Tari merged mining commitments (eg: hex("TARI") +
hash) and enforce its uniqueness.

© Coinspect 2024 24 / 130

Status

Fixed.

If more than a single merge mining hash is added into the coinbase transaction the
verify_header function returns an error.

© Coinspect 2024 25 / 130

TARI-006

Attackers can mine several blocks at once by
using multiple Monero coinbase transactions

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/helpers.rs

Description

A miner can mine different blocks at the same height concurrently at no cost by
creating invalid Monero blocks that have several coinbase transactions in them.
This issue has the same exact impact as TARI-005.

Consider the verify_header() method. The last call is made to
is_valid_merkle_root().

fn verify_header(header: &BlockHeader) -> Result<MoneroPowData,
MergeMineError> {
 let monero_data = MoneroPowData::from_header(header)?;
 let expected_merge_mining_hash = header.mining_hash();
 let extra_field =
ExtraField::try_parse(&monero_data.coinbase_tx.prefix.extra)

© Coinspect 2024 26 / 130

 .map_err(|_| MergeMineError::DeserializeError("Invalid extra
field".to_string()))?;
 // Check that the Tari MM hash is found in the monero coinbase
transaction
 let is_found = extra_field.0.iter().any(|item| match item {
 SubField::MergeMining(Some(depth), merge_mining_hash) => {
 depth == &VarInt(0) && merge_mining_hash.as_bytes() ==
expected_merge_mining_hash.as_slice()
 },
 _ => false,
 });

 if !is_found {
 return Err(MergeMineError::ValidationError(
 "Expected merge mining tag was not found in Monero coinbase
transaction".to_string(),
));
 }

 if !monero_data.is_valid_merkle_root() {
 return Err(MergeMineError::InvalidMerkleRoot);
 }

 Ok(monero_data)
}

The is_valid_merkle_root() method will check that the coinbase is included in
the block by calling calculate_root(), which in turns uses information found on
the Monero block to reconstruct the root.

 pub fn is_valid_merkle_root(&self) -> bool {
 let coinbase_hash = self.coinbase_tx.hash();
 let merkle_root =
self.coinbase_merkle_proof.calculate_root(&coinbase_hash);
 self.merkle_root == merkle_root
 }

 pub fn calculate_root(&self, hash: &Hash) -> Hash {
 if self.depth == 0 {
 return self.branch[0];
 }

 let mut root = *hash;
 for d in 0..self.depth {
 if (self.path_bitmap >> (self.depth - d - 1)) & 1 > 0 {
 root = cn_fast_hash2(&self.branch[d as usize], &root);
 } else {
 root = cn_fast_hash2(&root, &self.branch[d as usize]);
 }
 }

 root
 }

© Coinspect 2024 27 / 130

The issue is that an attacker is able to create two versions of the same Monero
block which point to different transactions as the coinbase via the path_bitmap. By
doing this, an attacker can commit to several Tari blocks while working on a single
Monero block by putting each Tari block in a different Monero transaction and then
pointing the coinbase to the one they wish to publish.

These blocks are invalid in the Monero network as the consensus rules prevent a
block from having more than a single coinbase. But Tari does not verify Monero
consensus rules, so the block is considered valid for the purposes of verifying
proof of work.

Recommendation

Make the path where a coinbase transaction should be constant. Monero creates
the the transaction root using the coinbase transaction as the first item. Using that
as a constant would incur in no incompatibility with Monero while mitigating this
issue.

Status

Fixed.

Miners can no longer provide the path_bitmap value, and only the leftmost Monero
transaction is accepted.

https://github.com/monero-rs/monero-rs/blob/main/src/blockdata/block.rs#L103

© Coinspect 2024 28 / 130

TARI-007

Malicious script makes validators waste
computations

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

infrastructure/tari_script/src/script.rs

Description

An attacker can force the CHECK_MULTISIG family of opcodes to be always worst
case by ordering the public keys and their signatures in a way that maximizes the
amount of iterations the nested for-loop must do in order to verify the script.

By putting the public key of the signers and their signatures in reverse order (ie:
the signer for the first signature is the last public key, the second is the second to
last, and so on), an attacker makes all validators waste resources. This is not
reflected in the protocol fees. It is worth keeping in mind that verifying signatures
is an expensive process for validators.

 for s in &signatures {
 for (i, pk) in public_keys.iter().enumerate() {

© Coinspect 2024 29 / 130

 if !sig_set.contains(s) && !key_signed[i] &&
s.verify_challenge(pk, &message) {
 // This prevents Alice creating 2 different sigs
against her public key
 key_signed[i] = true;
 sig_set.insert(s);
 agg_pub_key = agg_pub_key + pk;
 break;
 }
 }
 // Make sure the signature matched a public key
 if !sig_set.contains(s) {
 return Ok(None);
 }
 }

The impact of this issue is currently low, as the upper bound is around ~500
iterations of the loop.

Recommendation

Make signatures and public_keys be ordered, just like Bitcoin does.

Status

Fixed. The code now makes sure the public_keys iterator does not backtrack,
enforcing that signatures and public keys are presented in order.

https://github.com/bitcoin/bitcoin/blob/d23fda05842ba4539b225bbab01b94df0060f697/src/script/interpreter.cpp#L1152C21-L1152C21

© Coinspect 2024 30 / 130

TARI-008

Attackers can create the same block with
different hashes

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/helpers.rs

Description

Multiple Tari blocks can be created from a single valid proof of work. The blocks
are identical for most purposes, but have a different hash. Because of this, an
attacker can create several different forks, all with the same information but being
built on different hashes. Once these malicious blocks are spread on the network,
the attacker can use its hashing power to double spend much more easily, as the
hashing power of the network is divided.

The issue exploit a malleability bug in the merkle proof used for merge mined
blocks. The difference with TARI-005 and TARI-006 is that in this case multiple
Tari blocks that share the same mining hash are created, instead of using different
mining hash values. Additionally, any user in the network can modify a valid Tari
block mined with RandomX to create new valid blocks. Produced blocks are, in

© Coinspect 2024 31 / 130

essence, the same blocks but with different hash in Tari due to a difference in the
proof of work data.

The MerkleProof data structure has a path_bitmap which is used for deciding the
path used for the merkle inclusion.

pub struct MerkleProof {
 branch: Vec<Hash>,
 depth: u16,
 path_bitmap: u32,
}

This path is used in the calculate_root method for generating the root hash:

 pub fn calculate_root(&self, hash: &Hash) -> Hash {
 if self.depth == 0 {
 return self.branch[0];
 }

 let mut root = *hash;
 for d in 0..self.depth {
 if (self.path_bitmap >> (self.depth - d - 1)) & 1 > 0 {
 root = cn_fast_hash2(&self.branch[d as usize], &root);
 } else {
 root = cn_fast_hash2(&root, &self.branch[d as usize]);
 }
 }

 root
 }

The issue lies in that only the bits used for walking the path are validated by the
Tari node. Once d reaches self.depth, the remaining bits are completely ignored.

An attacker can modify the bits to generate new Tari blocks, as these bits are
included in the encoding of the block when calculating the block's hash, as seen in
base_layer/core/src/blocks/block_header.rs:

 pub fn hash(&self) -> FixedHash {
 DomainSeparatedConsensusHasher::
<BlocksHashDomain>::new("block_header")
 .chain(&self.mining_hash())
 .chain(&self.pow)
 .chain(&self.nonce)
 .finalize()
 .into()
 }

Recommendation

© Coinspect 2024 32 / 130

Change the calculation of the root to use a list of hashes provided by the miner
instead of a depth and a bitmap.

By asking for the hashes of the siblings the data necessary to construct the block
is provided. Any extra data that is not used would lead to the root being different.

Alternatively, make sure that the entirety of the branch and bitmap fields are used
before exiting the method.

Status

Fixed

The proof of inclusion in the Monero block changed, and now only the path is
provided with no bitmap, removing malleability issues.

© Coinspect 2024 33 / 130

TARI-009

Attackers can halt long-syncing by inflating
block headers

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/merkle_tree.rs

Description

An attacker can flood the network and stop long-syncing by inflating block
headers. The strategy used is exactly the same one as described in TARI-008: an
attacker simply appends data to the branch or bitmap of the ProofOfWork data,
which makes the header grow in size.

An attacker would not only be able to flood the network with these inflated
blocks, but also would break long syncing: they can create several blocks which
weight under the network size limit of 4Mb, but when requested via chunks,
exceed this value. Because the blocks are valid and under the limit, already-synced
clients which are requesting these blocks as soon as they are available would not
encounter this problem.

© Coinspect 2024 34 / 130

Nevertheless, new nodes (or nodes that are behind the tip and need to start long
syncing) would never be able to receive the blocks, as each chunk would exceed
the 4Mb limit.

During the long sync there are multiple points where several block headers are
requested in a single message. The first of which is in the find_chain_split()
method

 let request = FindChainSplitRequest {
 block_hashes: block_hashes.clone().iter().map(|v|
v.to_vec()).collect(),
 header_count,
 };

 let resp = match client.find_chain_split(request).await {
 Ok(r) => r,
 Err(RpcError::RequestFailed(err)) if
err.as_status_code().is_not_found() => {
 // This round we sent less hashes than the max, so
the next round will not have any more hashes to
 // send. Exit early in this case.
 if block_hashes.len() < NUM_CHAIN_SPLIT_HEADERS {
 return
Err(BlockHeaderSyncError::ChainSplitNotFound(peer.clone()));
 }
 // Chain split not found, let's go further back
 offset = NUM_CHAIN_SPLIT_HEADERS * iter_count;
 continue;
 },
 Err(err) => {
 return Err(err.into());
 },
 };

The find_chain_split gRPC request receives up to 1000 block headers. If
headers are big enough, this message will surpass the message size limit and will
never be received by the syncing node.

Recommendation

Fixing issue TARI-008 would also mitigate this one, as an attacker would not be
able to arbitrarily append data to block headers.

Consider also making implicit network limits (such as the one stating the 1000
headers weight less than 4Mb) an explicit consensus rule.

Status

© Coinspect 2024 35 / 130

Fixed

It is not possible to append arbitrary data to block headers anymore.

© Coinspect 2024 36 / 130

TARI-010

Attackers can halt long-sync by appending
trailing data to Proof of Work buffer

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/pow_data.rs

base_layer/core/src/proof_of_work/monero_rx/merkle_tree.rs

Description

An attacker can flood the network and stop long-syncing by inflating block
headers. The impact and requirements of this issue are exactly the same as those
of TARI-009. The difference is that even if TARI-009 is mitigated, the attacker can
still use the MoneroPowData field, which is sent on the network as a raw Vec<u8>, to
achieve the same result.

The MoneroPowData is encoded and decoded after being received by Borsh, which
reads certain fields. The attacker can simply put trailing data on the buffer, which
will be ignored by Borsh, but still be appended to the block as a raw buffer. This
buffer is part of the block hash calculations:

© Coinspect 2024 37 / 130

pub struct ProofOfWork {
 pub pow_algo: PowAlgorithm,
 pub pow_data: Vec<u8>,
}

 pub fn hash(&self) -> FixedHash {
 DomainSeparatedConsensusHasher::
<BlocksHashDomain>::new("block_header")
 .chain(&self.mining_hash())
 .chain(&self.pow)
 .chain(&self.nonce)
 .finalize()
 .into()
 }

The issue appears in two different steps of the deserialization logic of the RandomX
proof of work. Note that in both instances some data from the buf is being
deserialized, but any trailing data in the buf is ignored.

When the MerkleProof struct is being deserialized:

impl BorshDeserialize for MerkleProof {
 fn deserialize(buf: &mut &[u8]) -> io::Result<Self> {
 let len = buf.read_varint()?;
 let mut branch = Vec::with_capacity(len);
 for _ in 0..len {
 branch.push(
 Hash::consensus_decode(buf)
 .map_err(|err|
io::Error::new(io::ErrorKind::InvalidData, err.to_string()))?,
);
 }
 let depth = BorshDeserialize::deserialize(buf)?;
 let path_bitmap = BorshDeserialize::deserialize(buf)?;
 Ok(Self {
 branch,
 depth,
 path_bitmap,
 })
 }
}

And when the MoneroPowData is being deserialized:

impl BorshDeserialize for MoneroPowData {
 fn deserialize(buf: &mut &[u8]) -> io::Result<Self> {
 let header = monero::BlockHeader::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,
e.to_string()))?;
 let randomx_key = BorshDeserialize::deserialize(buf)?;
 let transaction_count = BorshDeserialize::deserialize(buf)?;
 let merkle_root = monero::Hash::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,

© Coinspect 2024 38 / 130

e.to_string()))?;
 let coinbase_merkle_proof =
BorshDeserialize::deserialize(buf)?;
 let coinbase_tx = monero::Transaction::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,
e.to_string()))?;
 Ok(Self {
 header,
 randomx_key,
 transaction_count,
 merkle_root,
 coinbase_merkle_proof,
 coinbase_tx,
 })
 }
}

Recommendation

Make sure there is no trailing data after deserializing the buffers.

Status

Fixed

It is not possible to append data on the encoded structs anymore.

© Coinspect 2024 39 / 130

TARI-011

Attackers can crash nodes by manipulating
proof of work data

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/merkle_tree.rs

Description

Attackers can remotely trigger a panic with malicious messages.

The vulnerability lies in the RandomX proof of work validation process. Attackers
can trigger an out of index access in the branch vector of the MerkleProof struct.

During the calculate_root procedure the index used for accessing the vector is
limited by the depth variable which can be larger than the branch length.

 /// Calculates the merkle root hash from the provide Monero hash
 pub fn calculate_root(&self, hash: &Hash) -> Hash {
 if self.depth == 0 {
 return self.branch[0];
 }

© Coinspect 2024 40 / 130

 let mut root = *hash;
 for d in 0..self.depth {
 if (self.path_bitmap >> (self.depth - d - 1)) & 1 > 0 {
 root = cn_fast_hash2(&self.branch[d as usize], &root);
 } else {
 root = cn_fast_hash2(&root, &self.branch[d as usize]);
 }
 }

 root
 }

The accesses at &self.branch[d as usize] may lay outside the array bounds.

Attackers can forge headers with a proof of work whose depth excess the size of
the branch array triggering the exception. The attack does not require hashing
power nor any special privilege other than being connected to the victim's node.

Recommendation

Check array bounds before accessing it.

Status

Fixed

The algorithm has been changed and now it is not possible to access out of bound
items.

© Coinspect 2024 41 / 130

TARI-012

Proof of work can be copy-pasted

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/merkle_tree.rs

Description

Attackers can grab any Monero block that satisfies Tari difficulty and use it to
create infinite Tari blocks. This is because attackers are able to skip the merkle
root calculation used to make sure that the Monero commitment to a Tari block is
protected by proof of work.

Attackers are able to do this by providing a depth of zero in the MerkleProof data
along with a branch which has the merkle root on its first position. It is important
to note that the MerkleProof is not protected by Monero proof-of-work and
attackers are free to modify it.

By doing this, attackers can reuse existing blocks to commit to new ones by
changing the first element of the branch to be equal to the merkle root and forging
a coinbase that commits to a new Tari block.

© Coinspect 2024 42 / 130

Attackers need not have any mining power. They are, effectively, reusing the proof
of work of a block to produce several.

The vulnerability can be found in the calculate_root method, which trusts the
MerkleProof data when depth == 0, instead of using the hash which is derived from
the coinbase.

 /// Calculates the merkle root hash from the provide Monero hash
 pub fn calculate_root(&self, hash: &Hash) -> Hash {
 if self.depth == 0 {
 return self.branch[0];
 }

 let mut root = *hash;
 for d in 0..self.depth {
 if (self.path_bitmap >> (self.depth - d - 1)) & 1 > 0 {
 root = cn_fast_hash2(&self.branch[d as usize], &root);
 } else {
 root = cn_fast_hash2(&root, &self.branch[d as usize]);
 }
 }

 root
 }

Because the coinbase is not used, attackers are able to forge its ExtraField, so the
new blocks would have a coinbase with the appropriate commitment, albeit one
not validated by proof of work.

 let is_found = extra_field.0.iter().any(|item| match item {
 SubField::MergeMining(Some(depth), merge_mining_hash) => {
 depth == &VarInt(0) && merge_mining_hash.as_bytes() ==
expected_merge_mining_hash.as_slice()
 },
 _ => false,
 });

Recommendation

Return the hash value in the depth == 0 case.

Status

Fixed.

When the depth is 0 the coinbase hash is returned.

© Coinspect 2024 43 / 130

TARI-013

Attackers can force sync on a peer eternally

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/sync/header_sync/synchronizer.rs

Description

Attackers can lie about the difficulty and height they have achieved, and send
already known headers to force a peer to sync. Therefore, the attacker can waste
victim's resources by making the peer re-validate headers and blocks. The victim
would also deprioritize syncing from benign peers. The attacker is not penalized.

The sync process starts in the Listening phase, where a peer will request
ChainMetadata. If a peer announces that they have a higher total difficulty and are
at least a couple of blocks ahead, the node will try to sync from them:

 (
 Listening(_),
 FallenBehind(Lagging {
 local: local_metadata,
 sync_peers,
 ..

© Coinspect 2024 44 / 130

 }),
) => {
 db.set_disable_add_block_flag();
 HeaderSync(HeaderSyncState::new(sync_peers,
local_metadata))
 },

It then proceeds with the HeaderSync, where the node will try to
determine_sync_status to find the point from where it should sync. To determine
this, the node instructs the peer to find a chain split:

 let (resp, block_hashes, steps_back) = self
 .find_chain_split(sync_peer.node_id(), client,
NUM_INITIAL_HEADERS_TO_REQUEST as u64)
 .await?;

The node expects the peer to send the block_hashes that are missing. If all goes
OK, the node will set its sync status to Lagging, which should proceed to sync the
rest of the headers in the synchronize_headers method.

While the synchronize_headers method has some checks to validate the peer's
declared difficulty, these are skipped if the peer sent less than the expected
amount of headers:

 if pending_len < NUM_INITIAL_HEADERS_TO_REQUEST {
 // Peer returned less than the number of requested headers.
This indicates that we have all the available
 // headers.
 debug!(target: LOG_TARGET, "No further headers to
download");

 if !has_better_pow {
 return
Err(BlockHeaderSyncError::PeerSentInaccurateChainMetadata {
 claimed:
sync_peer.claimed_chain_metadata().accumulated_difficulty(),
 actual: Some(total_accumulated_difficulty),
 local: split_info
 .local_tip_header
 .accumulated_data()
 .total_accumulated_difficulty,
 });
 }

 return Ok(());
 }

Note the code will consider has_better_pow as true because the alternative chain
proposed by the peer is exactly the same as the one stored locally, so the
accumulated difficulty is exactly equal and the check is done with a less or equal
condition:

© Coinspect 2024 45 / 130

 fn pending_chain_has_higher_pow(&self, current_tip: &ChainHeader) -
> bool {
 let chain_headers = self.header_validator.valid_headers();
 if chain_headers.is_empty() {
 return false;
 }

 // Check that the remote tip is stronger than the local tip
 let proposed_tip = chain_headers.last().unwrap();
 self.header_validator.compare_chains(current_tip,
proposed_tip).is_le()
 }

As synchronize_headers returns OK(()), the synchronization process continues.
So, all in all, an attacker has to:

1. Lie about their difficulty to a peer
2. Send an amount of headers small enough so that

NUM_INITIAL_HEADERS_TO_REQUEST is bigger than pending, but big enough to
reach the tip of the local chain

This will place the victim in a state in which it constantly tries to sync from the
attacker, making it waste resources and time. This vulnerability also allows other
sync-related vulnerabilities to be triggered arbitrarily, as attackers do not have to
find a node that is lagging behind.

Recommendation

Ban peers who lie about their difficulty. Do not continue synchronization process if
the peer has not provided a better chain.

Status

This particular vector has been corrected by making sure that nodes present a
better proof of work. Nevertheless, a similar issue which uses another strategy to
trigger the problem can be found in TARI-039.

© Coinspect 2024 46 / 130

TARI-014

Miner can ban competition

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

/base_layer/core/src/base_node/sync/block_sync/synchronizer.rs

Description

A miner can ban blocks from the competition to get a higher percentage of hashing
power on the network. To do this, the miner leverages the bad block system,
which bans known bad block hashes from the network and the fact that block
headers have a field validator_node_mr, that is not protected by proof of work nor
considered when hashing the header.

Although bad blocks are added only on block sync, a miner can harness TARI-013
to force synchronization on a victim.

 let block = match res {
 Ok(block) => block,
 Err(err @ ValidationError::BadBlockFound { .. }) |
 Err(err @ ValidationError::FatalStorageError(_)) |
 Err(err @ ValidationError::AsyncTaskFailed(_)) |
 Err(err @ ValidationError::CustomError(_)) => return

© Coinspect 2024 47 / 130

Err(err.into()),
 Err(err) => {
 // Add to bad blocks
 if let Err(err) = self
 .db
 .write_transaction()
 .delete_orphan(header_hash)
 .insert_bad_block(header_hash, current_height)
 .commit()
 .await
 {
 error!(target: LOG_TARGET, "Failed to insert
bad block: {}", err);
 }
 return Err(err.into());
 },
 };

The attacker has to be well connected in the network to have a relatively high
chance of seeing the competing blocks before victims. The attacker also has to be
able to spin disposable nodes on the network, as peers will ban them once they
execute the attack.

Once they are, they:

1. Modify the validator_node_mr field of the block. Note that this does not alt
the block hash nor invalidates the proof of work.

2. Force a node to sync using TARI-013
3. Provide the modified block when syncing.
4. Block validation will fail due to the invalid validator_node_mr.
5. The block hash will be marked as bad and will not be accepted any longer.

Recommendation

Do not have fields on blocks that are susceptible to malleability and not protected
by proof of work. In particular, the validator_node_mr should be part of the mining
hash of the header.

Status

The validator_node_mr is now part of the mining hash, making it protected by
proof of work.

© Coinspect 2024 48 / 130

TARI-015

Known bad blocks are validated

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Medium

Description

The bad block system only adds bad blocks when received via syncing. This
makes it possible for attackers to force nodes to waste resources by repeatedly
sending known bad blocks.

Although attacker's nodes will be banned, spinning up a node with a different Node
ID is possible for dedicated attackers.

Recommendation

Make sure bad blocks are marked as such no matter how they are detected. It is
important to note that this should be implemented only after the block header
malleability issue described in TARI-014 is addressed, as if it is not, it would only
make TARI-014 easier for attackers.

© Coinspect 2024 49 / 130

Status

The bad block system is more robust now and blocks are banned when
appropriate.

© Coinspect 2024 50 / 130

TARI-016

Attackers can halt synchronization

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/sync/header_sync/synchronizer.rs

Description

An attacker can send the same header indefinitely to cause a client to become
stuck, thereby preventing it from syncing from other peers. In combination with
TARI-013, this can be triggered arbitrarily.

The vulnerable path is found in the header sync process, which ignores a header if
it is already found on the database and waits for a new one on the gRPC stream:

 if let Some(h) = existing_header {
 warn!(
 target: LOG_TARGET,
 "Received header #{} `{}` that we already have.
Ignoring",
 h.height,
 h.hash().to_hex()
);

© Coinspect 2024 51 / 130

 continue;
 }

An attacker can send the same known header forever, keeping the victim on that
loop. As long as the header keeps sending messages at certain rates, timeouts are
not triggered.

Recommendation

A well-behaved peer should not send known headers on sync. Cut
communications when a peer sends a known-header.

Status

Fixed by returning error when a repeated block is provided.

© Coinspect 2024 52 / 130

TARI-017

Attackers can avoid ban on horizon sync

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

base_layer/core/src/base_node/state_machine_service/states/horizon_sta
te_sync.rs

Description

An attacker can send invalid data and avoid getting banned because of it,
consequently wasting the victim's resources. Victims must be running horizon
sync.

Horizon sync logic is contained in the horizon_state_sync. The entry point for the
process is the next_step function, which calls synchronize:

 match horizon_sync.synchronize().await {
 Ok(()) => {
 info!(target: LOG_TARGET, "Horizon state has
synchronized.");
 StateEvent::HorizonStateSynchronized
 },
 Err(err) => {

© Coinspect 2024 53 / 130

 let _ignore =
shared.status_event_sender.send(StatusInfo {
 bootstrapped,
 state_info:
StateInfo::SyncFailed("HorizonSyncFailed".to_string()),
 randomx_vm_cnt,
 randomx_vm_flags,
 });
 warn!(target: LOG_TARGET, "Synchronizing horizon state
has failed. {}", err);
 StateEvent::HorizonStateSyncFailure
 },

The issue is that no inner methods, including next_step or synchronize, ban a peer
when they send invalid data. This, in conjunction with TARI-013, means that
attackers can continuously force a sync on horizon-syncing peers and send them
trash responses with no consequences for them.

Recommendation

Ban nodes that send invalid data on Horizon Sync, just like nodes are banned in
Block Sync.

Status

The misbehaving nodes are now banned.

© Coinspect 2024 54 / 130

TARI-018

Consensus is dependent on platform

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

base_layer/mmr/src/common.rs

Description

Merkle mountain range maximum size is different on different platforms. In
particular, the creation of new MMRs depends on the result of the
checked_n_leaves method, which returns different values depending on the
platform:

pub fn checked_n_leaves(size: usize) -> Option<usize> {
 if size == 0 {
 return Some(0);
 }
 if size == usize::MAX {
 return None;
 }

© Coinspect 2024 55 / 130

As usize is platform dependent, the comparison with usize::MAX will be different
for equal values of size on different platforms. A value of 2**32-1 would return
None for users on a 32-bit platform while otherwise work and return the leave size
for users of 64-bit platforms.

The likelihood of this issue is considered extremely low, as it would need a tree
with at least 2**32-1 leaves. Theoretically, it is possible to have a tree of exactly
this size because insertion checks assert only that the position fits into an u32,
which 2**32-1 does. For an example, see the insertion in HorizonStateSync:

txn.insert_pruned_output_via_horizon_sync(
 utxo.hash.try_into()?,
 *current_header.hash(),
 current_header.height(),
 u32::try_from(mmr_position)?,
 current_header.timestamp(),
);

Similarly, the find_peaks, family_branch and peak_map_height return different
results depending on the amount of leading zeros in the pos argument:

pub fn peak_map_height(mut pos: usize) -> (usize, usize) {
 if pos == 0 {
 return (0, 0);
 }
 let mut peak_size = ALL_ONES >> pos.leading_zeros();

As the pos argument is of type usize, its amount of leading zeros is platform
dependent. Nevertheless, the analysis is not as straightforward, as the differences
would only be observable for values for which usize would overflow anyway.

Recommendation

Even though the attacks described here are theoretical, it is recommended that
consensus critical calculations are always performed on a fixed-sized type to avoid
any kind of hard fork.

Status

While Tari has removed the parts of the code mentioned in this issue in favor of
another merkle mountain range implementation, the team has also stated that:

© Coinspect 2024 56 / 130

Default Tari applications only support 64bit only and will block when
running on 32 bit applications

© Coinspect 2024 57 / 130

TARI-019

Attackers can crash a node by forcing over-
allocation

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Description

Attackers can crash the node by sending crafted serialized covenants, merkle
trees, scripts or execution stacks. This is because the
BorshDeserialize::deserialize trusts the data to announce its len honestly and
allocates that amount of bytes in a vector.

 fn deserialize(buf: &mut &[u8]) -> io::Result<Self> {
 let mut len = buf.read_varint()?;
 let mut data = Vec::with_capacity(len);

If an attacker crafts data such that the varint in its first position is big enough, the
node will crash is it cannot allocate enough bytes.

Attackers can take advantage of several paths where data is deserialized. For
example:

© Coinspect 2024 58 / 130

They can create a covenant with an evil ARG_TARI_SCRIPT, triggering the panic
from CovenantArg::read_from.
They can craft a malicious merkle tree and put it in a monero merkle proof to
make MoneroPowData::deserialize method panic.
They can create TransactionOutput or TransactionInput protobuf messages
with crafted covenants to make their try_from methods panic.

Note that this list is not meant to be exhaustive.

Recommendation

Do not trust data to report its correct length. Set maximums to the data length.
After parsing, consider checking that the reported size matches and actual size and
take punitive action if not.

Status

The varint is now read and checked against a maximum before allocating memory.

© Coinspect 2024 59 / 130

TARI-020

Default output selection criteria can be
abused to increase the sender's fee

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

.../wallet/src/output_manager_service/storage/sqlite_db/output_sql.rs

Description

The output selection mechanism can be abused to increase the sender's
transaction fee in scenarios where the adversary can control the amount to be
transferred.

The default output selection mechanism can use two modes depending on the
amount to be transferred. If the amount is larger than the maximum output value,
the order will be descendant. Otherwise, it will be ascendant, meaning it will
select smaller outputs first.

UtxoSelectionOrdering::SmallestFirst =>
query.then_order_by(outputs::value.asc()),
UtxoSelectionOrdering::LargestFirst =>

© Coinspect 2024 60 / 130

query.then_order_by(outputs::value.desc()),
UtxoSelectionOrdering::Default => {
 // NOTE: keeping filtering by `script_lock_height` and `maturity`
for all modes
 // lets get the max value for all utxos
 let max: Option<i64> = outputs::table
 .filter(outputs::status.eq(OutputStatus::Unspent as i32))
 .filter(outputs::script_lock_height.le(i64_tip_height))
 .filter(outputs::maturity.le(i64_tip_height))
 .order(outputs::value.desc())
 .select(outputs::value)
 .first(conn)
 .optional()?;

 match max {
 // Want to reduce the number of inputs to reduce fees
 Some(max) if amount > max as u64 =>
query.then_order_by(outputs::value.desc()),

 // Use the smaller utxos to make up this transaction.
 _ => query.then_order_by(outputs::value.asc()),
 }
},

Therefore, an adversary able to control the amount to be transferred can force the
sender to use dust values to increase the transaction fee. The dust input values to
be used by the sender could be previously sent by the adversary.

Even though the wallet admits configuring a flag to drop the transaction in case
the fees exceed the amount to be transferred, it can still be abused to spend an
amount of fees slightly lower than the value to be transferred.

Recommendation

Ignore dust amounts in the output selection mechanism.

Also, consider implementing algorithms such as Branch and Bound which
minimize the creation of change outputs which can be of dust amounts, by trying to
find the exact match for transaction amounts in the UTXO set.

Status

The code now ignores amounts below a user-configurable dust_amount.

https://bitcoin.design/guide/how-it-works/coin-selection/#branch--bound-bnbexact-change

© Coinspect 2024 61 / 130

TARI-021

Attackers can crash nodes by broadcasting
JOIN messages

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

comms/dht/src/inbound/dht_handler/task.rs

Description

An attacker can send crafted Join messages which crashes the node with an Out
Of Memory error. The crash can be generated in less than three minutes in a
system with 32GB of RAM available. The attacker is not banned or otherwise
impacted.

The attacker has to send JoinMessages which contain many addresses, although
taking into account the MAX_FRAME_SIZE limit for DHT messages. In tests, auditors
successfully crashed a victim node with messages with 28801 valid
multiaddresses.

After processing a few messages (six in auditor's tests), the victim requires more
memory than available in the system and crashes.

© Coinspect 2024 62 / 130

Heapstack was used as a profiler and reported this memory consumption after the
process finished:

total runtime: 199.44s.
calls to allocation functions: 769441 (3858/s)
temporary memory allocations: 43460 (217/s)
peak heap memory consumption: 43.54G
peak RSS (including heaptrack overhead): 30.67G
total memory leaked: 43.54G

The amount of allocations being requested can also be seen in the graph produced
by the same profiler:

It is likely the main cause is the quadratic memory requirement for addresses in
the handle_join method. Valid MultiAddresses are cloned into the
peer_identity_claim struct and then both the original addresses vector and the
one in peer_identity_claim are passed to Peer::new.

 let peer_identity_claim =
PeerIdentityClaim::new(addresses.clone(), features, identity_signature,
None);
 let new_peer = Peer::new(
 authenticated_pk,
 node_id.clone(),

MultiaddressesWithStats::from_addresses_with_source(addresses,
&PeerAddressSource::FromJoinMessage {
 peer_identity_claim,
 }),
 PeerFlags::empty(),
 features,
 vec![],
 String::new(),
);

© Coinspect 2024 63 / 130

The MultiAddressesWithStats::from_addresses_with_source then clones again
the peer_identity_claim for each address:

 let mut addresses_with_stats =
Vec::with_capacity(addresses.len());
 for address in addresses {
 addresses_with_stats.push(MultiaddrWithStats::new(address,
source.clone()));
 }

This results in quadratic memory requirements. When predicting the memory
usage with these rationale it matches what is observed in the profiler.

Recommendation

There are several strategies that can be taken to mitigate this issue, including
limiting the amount of addresses a peer can send or further decreasing the
maximum message size.

Status

The amount of addresses a peer can send is now limited.

© Coinspect 2024 64 / 130

TARI-022

Attackers can crash miners by sending a
block with a high coinbase fee

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/consensus/consensus_manager.rs

Description

Attackers can construct a block that has a coinbase fee of u64::MAX. Nodes that
receive this block crash due to an overflow when trying to check the coinbase
output.

The attack is possible for anyone because the overflow happens in internal
validations, before proof of work checks are done.

The overflow occurs in the calculate_coinbase_and_fees method:

 pub fn calculate_coinbase_and_fees(&self, height: u64, kernels: &
[TransactionKernel]) -> MicroTari {
 let coinbase = self.emission_schedule().block_reward(height);

© Coinspect 2024 65 / 130

 kernels.iter().fold(coinbase, |total, k| total + k.fee)
 }

The attacker is not penalized in any way and can reuse the same block to trigger
the same overflow over and over again.

There are several other places where overflow might potentially occur. For
example, the TransactionWeight::calculate also naively multiplies non-trusted
values; although in that case the amount of data needed to effectively trigger the
error is too big.

Recommendation

All operations in the codebase should use checked_ operations unless they are
proven not to trigger an overflow.

Status

Fixed. Calculations now use checked_add.

© Coinspect 2024 66 / 130

TARI-023

Attackers can observe and manipulate gRPC
requests to wallets

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

applications/tari_console_wallet/src/grpc/wallet_grpc_server.rs

Description

The use of HTTP allows an unauthorized attacker to intercept credentials or even
seize control of the connection between a wallet and a node, thereby
compromising the integrity and confidentiality of the data.

The following code snippet shows how the merge miner connects to a wallet
using HTTP:

info!(target: LOG_TARGET, "Connecting to wallet at {}", wallet_addr);
let wallet_addr = format!("http://{}", wallet_addr);
let wallet_client =

WalletGrpcClient::connect_with_auth(&wallet_addr,
&config.console_wallet_grpc_authentication).await?;

© Coinspect 2024 67 / 130

The likelihood of this issue is deemed low because it is expected most
configurations will keep wallets and node running on the same host. It also
requires the adversary to be placed on the same network.

Recommendation

Follow the recommended guidelines at Authentication | gRPC to implement
SSL/TLS based authentication and transport security.

Status

Tari addressed this issue in two commits:

4be85e0f0d778ee813fa41df927cfcac79a3f1db
17676ce8f90b0f2aa413218cc72c21c587293d32.

The first commit had all the infrastructure necessary for the project to use SSL,
including a warning outlying the risks of generating self-signed certificates.
Nevertheless, there were two instances where connections via http were made: in
run_merge_miner.rs and in run_miner.rs, in both cases in the method
connect_wallet().

The Tari team shared a fix for the audit-fixes branches in
17676ce8f90b0f2aa413218cc72c21c587293d32 for the run_miner.rs file, but the
run_merge_miner.rs still made the connection through HTTP.

The Tari dev team explained that the was the case because in their development
branch, which includes changes not in scope for this audit, the connect_wallet()
method does not exist anymore: miners do not need to speak to wallets anymore.

Coinspect checked that commit 89b19f6de8f2acf28557ca37feda03af2657cf30 of the
development branch indeed removed the vulnerable lines of code and that in
commit b80f7e366b14e10b3fb0e9835fb76dd5596d0cf8 the issue is entirely fixed.

The risk is fully mitigated in the development branch as of commit
b80f7e366b14e10b3fb0e9835fb76dd5596d0cf8.

https://grpc.io/docs/guides/auth/

© Coinspect 2024 68 / 130

TARI-024

Attackers can crash the wallet via the gRPC
service

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

applications/tari_app_grpc/src/authentication/server_interceptor.rs

Description

A design flaw in the implementation of the ServerAuthenticationInterceptor
allows an attacker to crash the wallet and reduces the complexity of a brute-force
attack.

The ServerAuthenticationInterceptor as it is implemented allows an
unauthenticated attacker to crash the wallet service by supplying a crafted Argon2
hash value with certain parameters that will allocate a high amount of memory or
employ too much CPU time.

The attacker needs to be able to send authentication requests to the wallet. This
string consists of a string in the form Basic: Base64Data. The standard version of
the encoded data is a pair (username, password) delimited by a colon character.

© Coinspect 2024 69 / 130

The parsing of the header is performed by the method
BasicAuthCredentials::from_header:

impl ServerAuthenticationInterceptor {
 pub fn new(auth: GrpcAuthentication) -> Self {
 Self { auth }
 }

 fn handle_basic_auth(
 &self,
 req: Request<()>,
 valid_username: &str,
 valid_password: &[u8],
) -> Result<Request<()>, Status> {
 match req.metadata().get(AUTHORIZATION.as_str()) {
 Some(t) => {
 let val = t.to_str().map_err(unauthenticated)?;
 let credentials =
BasicAuthCredentials::from_header(val).map_err(unauthenticated)?;
 credentials
 .validate(valid_username, valid_password)
 .map_err(unauthenticated)?;
 Ok(req)
 },
 _ => Err(unauthenticated("Missing authorization header")),
 }
 }
}

Once the authorization header has been parsed, it is then used to compare it to the
username and password set by the owner of the service (in this case the wallet
service):

impl BasicAuthCredentials {
 pub fn validate(&self, username: &str, password: &[u8]) ->
Result<(), BasicAuthError> {
 if self.user_name.as_bytes() != username.as_bytes() {
 return Err(BasicAuthError::InvalidUsername);
 }
 // These bytes can leak if the password is not utf-8, but since
argon encoding is utf-8 the given
 // password must be incorrect if conversion to utf-8 fails.
 let bytes = self.password.reveal().to_vec();
 let str_password = Zeroizing::new(String::from_utf8(bytes)?);
 let header_password = PasswordHash::parse(&str_password,
Encoding::B64)?;
 Argon2::default().verify_password(password, &header_password)?;
 Ok(())
 }
}

The BasicAuthCredentials::validate method compares the username and
password for the service (specified in the service's configuration file) with the
BasicAuthCredentials parsed from the network. To do so it uses

© Coinspect 2024 70 / 130

Argon2::default().verify_password which takes a plain text password string and
a hash of the expected password. Unfortunately, the wallet implementation
inverts these parameters and instead of passing the client supplied password to
the function, it uses the expected password and performs PasswordHash::parse on
the attacker controlled input.

The way argon2 hashes are designed, allows users to store the hashing
parameters (salt, memory usage, CPU usage, etc) in the hash itself for future
updates and flexibility. This means that PasswordHash::parse does more than
parsing a hashed password; it sets the parameters (including algorithm, memory
used, and time spent) that will be used to verify the password, therefore the
parsed data should come from a trusted source, for instance a database or a local
configuration file, as is the case with the wallet.

The following test case illustrates how an attacker can make the wallet service
allocate a large amount of memory (m=10000000) and run for large amount of
iterations (t=10000):

#[test]
fn it_allocates_a_lot_of_memory_and_runs_for_a_while() {

let hashed =
"$argon2id$v=19$m=10000000,t=10000,p=1$PhPhJQKM2tLzYr34/myoOw$fCBdhFCIE
E65MIjeeR6NdeNTAfjwhCEQ84jGj9n8uig";

let credentials =
BasicAuthCredentials::new("admin".to_string(), hashed.into());

credentials.validate("admin", b"secret").unwrap();
}

Because the parameters are controlled by the attacker, it is possible for them to
crash the program or use an arbitrary amount of resources on the victim system.

This issue could also lead to complete authentication bypass due to the current
design: an attacker can supply a hash with parameters that are less secure than
the default ones defined by the argon2 crate. For example the argon2 specification
defines the minimum hash byte length to be 4 bytes, so an attacker could send a
hash with these parameters and they would have to only brute-force 2^32
passwords to find a collision with the actual password.

This situation is rendered several orders of magnitude harder due to the better
defaults that the argon2 crate defines for the minimum hash size, which is 10
bytes, making the attack unfeasible.

The likelihood of this issue is deemed low as it is expected that most
configurations will keep wallets and node running on the same host.

© Coinspect 2024 71 / 130

Recommendation

If the existing authentication method is retained, the client must provide a
password for the server to hash and compare with the stored hash of the expected
password.

Status

Fixed. The implementation now correctly creates a BasicAuthCredentials from the
stored values instead of the user-supplied ones.

© Coinspect 2024 72 / 130

TARI-025

Wallet username vulnerable to timing attacks

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

applications/tari_app_grpc/src/authentication/basic_auth.rs

Description

The validate method does not use a constant-time compare function to check
usernames. This makes it possible for an attacker to analyze the time it takes for
the method to return in order to optimize their bruteforce attack.

if self.user_name.as_bytes() != username.as_bytes() {
 return Err(BasicAuthError::InvalidUsername);
}

The absence of constant-time comparison permits an attacker to infer details
about the correct username by observing how long the system takes to respond to
various inputs. Consequently, an attacker can exploit this vulnerability to perform a
side-channel timing attack, systematically guessing the username and analyzing

© Coinspect 2024 73 / 130

the time taken for the system to respond. Over repeated attempts, this could
allow an attacker to reconstruct the correct username.

Recommendation

Implement a constant-time comparison method for usernames to prevent side-
channel attacks.

Status

Fixed. The code now implement constant-time comparisons.

© Coinspect 2024 74 / 130

TARI-026

Attackers can hold the peer-stream open
indefinitely

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

comms/dht/src/network_discovery/discovering.rs

Description

Malicious peers can hold a GetPeersRequest stream open indefinitely when an
innocent peers joins the network and requests peers from them. The malicious
peer can send the same peer over and over again.

The victim validates the shared peers before marking it as a duplicates and never
takes any action against the attacker as long as peers sent are valid.

The cause can be seen in the request_peers file:

 async fn request_peers(
 &mut self,
 sync_peer: &NodeId,
 mut client: rpc::DhtClient,

© Coinspect 2024 75 / 130

) -> Result<(), NetworkDiscoveryError> {
 debug!(
 target: LOG_TARGET,
 "Requesting {} peers from `{}`",
 self.params
 .num_peers_to_request
 .as_ref()
 .map(ToString::to_string)
 .unwrap_or_else(|| "∞".into()),
 sync_peer
);
 match client
 .get_peers(GetPeersRequest {
 n: self
 .params
 .num_peers_to_request
 .map(|v| u32::try_from(v).unwrap())
 .unwrap_or_default(),
 include_clients: true,
 })
 .await
 {
 Ok(mut stream) => {
 while let Some(resp) = stream.next().await {
 match resp {
 Ok(resp) => match resp.peer.and_then(|peer|
peer.try_into().ok()) {
 Some(peer) => {
 self.validate_and_add_peer(sync_peer,
peer).await?;
 },
 None => {
 debug!(target: LOG_TARGET, "Invalid
response from peer `{}`", sync_peer);
 },
 },
 Err(err) => {
 debug!(target: LOG_TARGET, "Error response
from peer `{}`: {}", sync_peer, err);
 },
 }
 }
 },
 Err(err) => {
 debug!(
 target: LOG_TARGET,
 "Failed to request for peers from peer `{}`: {}",
sync_peer, err
);
 },
 }

 Ok(())
 }

As long as the attacker keeps sending peers, validate_and_add_peer will be
called.

© Coinspect 2024 76 / 130

An attacker could take advantage of this by setting up several malicious nodes on
the network which kept the discovery process busy in order to make it more
difficult for victims to find honest peers.

Recommendation

Set a maximum amount of peers the client will listen for as well as timeouts. Have
low tolerance for sending duplicated peers.

Status

Fixed. The node receiving peers now have sanity checks that prevent an attacker
from keeping the stream open indefinitely.

© Coinspect 2024 77 / 130

TARI-027

Overflow when computing accumulated
difficulty will eventually halt mining

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

base_layer/core/src/blocks/accumulated_data.rs:291

Description

An overflow of the u64 variable that keeps track of the accumulated chain difficulty
will cause nodes to stop ingesting new blocks.

Tari uses a u64 variable to record the accumulated difficulty from its genesis block.
Similarly, the current difficulty of each block is stored in a u64 variable, which is
added to the accumulated difficulty each time a block is received. Over time, this
will lead to an overflow of accumulated difficulty variable. As a result, nodes will
be unable to process new blocks due to the inability to track the rising
accumulated difficulty.

The code below adds the achieved difficulty of the current block (achieved_target)
to the accumulated difficulty since the genesis block. In case of overflow, it will

© Coinspect 2024 78 / 130

trigger the BlockError::DifficultyOverflow error.

let (randomx_diff, sha3x_diff) = match achieved_target.pow_algo() {
 PowAlgorithm::RandomX => (
 previous_accum
 .accumulated_randomx_difficulty
 .checked_add(achieved_target.achieved())
 .ok_or(BlockError::DifficultyOverflow)?,
 previous_accum.accumulated_sha3x_difficulty,
),
 PowAlgorithm::Sha3x => (
 previous_accum.accumulated_randomx_difficulty,
 previous_accum
 .accumulated_sha3x_difficulty
 .checked_add(achieved_target.achieved())
 .ok_or(BlockError::DifficultyOverflow)?,
),
};

This error will not cause the node to crash, but it will prevent the new block from
being added to the current chain.

The impact and likelihood of these issue are low due to several factors that
mitigate its risk, such as the high amount of work needed to reach the u64.

Recommendation

Store the accumulated difficulty in a u256 variable instead, similar to Bitcoin's
approach for storing accumulated work.

Status

Fixed. Tari has increased the accumulated difficultly to be u128, which is big
enough to be of no concern while remaining practical.

https://github.com/bitcoin/bitcoin/blob/df5af114df19730dc1d2936e5819e07273182a76/src/headerssync.h#L224

© Coinspect 2024 79 / 130

TARI-028

Attackers can crash the node with a malicious
Monero coinbase

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/proof_of_work/monero_rx/pow_data.rs

Description

Attackers can crash the node by sending a crafted Monero proof-of-work. The
crash happens due to an attempt to allocate more memory than possible into a
vector. The root cause can be found in the monero dependency used to parse the
monero data.

For Tari, the issue is triggered in the BorshDeserialize method of the
MoneroPowData struct:

impl BorshDeserialize for MoneroPowData {
 fn deserialize(buf: &mut &[u8]) -> io::Result<Self> {
 let header = monero::BlockHeader::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,
e.to_string()))?;

© Coinspect 2024 80 / 130

 let randomx_key = BorshDeserialize::deserialize(buf)?;
 let transaction_count = BorshDeserialize::deserialize(buf)?;
 let merkle_root = monero::Hash::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,
e.to_string()))?;
 let coinbase_merkle_proof =
BorshDeserialize::deserialize(buf)?;
 let coinbase_tx = monero::Transaction::consensus_decode(buf)
 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData,
e.to_string()))?;
 Ok(Self {
 header,
 randomx_key,
 transaction_count,
 merkle_root,
 coinbase_merkle_proof,
 coinbase_tx,
 })
 }
}

An attacker must craft a malicious message so as to reach the
Transaction::consensus_decode method. The attempted allocation happens inside
the monero crate in the decode_size_vec! macro, called when attempting to parse a
Bulletproof in the coinbase transaction:

macro_rules! decode_sized_vec {
 ($size:expr, $d:expr) => {{
 let mut ret = Vec::with_capacity($size as usize);
 for _ in 0..$size {
 ret.push(Decodable::consensus_decode($d)?);
 }
 ret
 }};
}

The program calls expands the macro with a $size of 4,177,002,576. The amount
of bytes this actually holds depends on the size of the type of the value $d, which
is 8, resulting in a minimum allocation of 33,416,020,608 bytes or about 31 Gb.

Rust nevertheless tries to allocate even more space (around 1307 Gb in auditors'
tests) and the program crashes immediately:

Conseunsus decoding RctSigPrunnable
Non-Bulletproof2 , non-Clsag
decoding sized vec with capacity: 4177002576
vector holds type of size: 8
so total size is: 33416020608
memory allocation of 1403472865536 bytes failed

© Coinspect 2024 81 / 130

Recommendation

The issue is not easy to fix from Tari's codebase. Consider collaborating with the
monero library to find similar bugs and fix them upstream.

Status

This particular issue has been mitigated by downgrading the monero-rs library to
version 0.18, where this behavior is not reproduced.

It is worth stating that continued assessment of dependencies is needed to make
sure other vulnerabilities are not introduced when changing, upgrading or
downgrading third-party components.

© Coinspect 2024 82 / 130

TARI-029

Attackers can crash the node with a single
gRPC request

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Description

An attacker with access to the gRPC can crash the node by sending a malicious
get_network_difficulty request.

The crash is triggered by an overflow when calculating the page offsets:

let page_iter = NonOverlappingIntegerPairIter::new(start_height,
end_height + 1, GET_DIFFICULTY_PAGE_SIZE);

An attacker crafts a message such that end_height is u64::max and adjust
start_height and from_tip so that the request is valid and reaches that line and
causes a panic in the node.

This is the exact program that an attacker can use:

© Coinspect 2024 83 / 130

async fn main() {
 let mut client =
BaseNodeGrpcClient::connect("http://localhost:18162").await.unwrap();
 client.get_network_difficulty(HeightRequest {
 from_tip: 0,
 start_height: u64::MAX,
 end_height: u64::MAX
 }).await.unwrap();
}

Recommendation

As mentioned in TARI-022, all mathematical operations should be protected from
overflowing.

Status

Fixed. This particular instance of overflow has been addressed by using a safe
adding method:

 NonOverlappingIntegerPairIter::new(start_height,
end_height.saturating_add(1), GET_DIFFICULTY_PAGE_SIZE)

© Coinspect 2024 84 / 130

TARI-030

Peer can crash horizon-syncing node with a
crafted bitmap

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/sync/horizon_state_sync/synchronizer.rs

Description

Attackers can crash a peer which is horizon-syncing from them with a crafted
bitmap. The bitmap makes the CRoaring dependency try to allocate invalid
memory.

The crash is triggered when receiving the DeletedDiff of the horizon sync process.
In particular, it is caused by an attempt to deserialize the malicious bitmap:

let diff_bitmap = Bitmap::try_deserialize(&diff_bitmap).ok_or_else(|| {
 HorizonSyncError::IncorrectResponse(format!(
 "Peer {} sent an invalid difference bitmap",
 sync_peer.node_id()

© Coinspect 2024 85 / 130

))
})?;

Recommendation

As with TARI-028, the issue is hard to mitigate from the Tari codebase, and
should be addressed upstream.

Status

Fixed. Croaring is no longer a dependency of Tari.

© Coinspect 2024 86 / 130

TARI-031

Attackers can crash the node with a script

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

infrastructure/tari_script/src/script.rs

Description

An attacker can craft a transaction with a malicious script that crashes any node
which attempts to execute it.

The crash is triggered by an underflow in the OP_COMPARE_HEIGHT opcode:

 fn handle_compare_height(stack: &mut ExecutionStack, block_height:
u64) -> Result<(), ScriptError> {
 let target_height = stack.pop_into_number::<i64>()?;
 let block_height = i64::try_from(block_height)?;

 let item = StackItem::Number(block_height - target_height);

 stack.push(item)
 }

© Coinspect 2024 87 / 130

An attacker creates a script which puts into the stack the i64::MIN. Any
subtraction will then cause the underflow.

let script = TariScript::new(vec![PushInt(i64::MIN), CompareHeight]);

Recommendation

Like TARI-022 and TARI-029: review all mathematical operations to make sure
they cannot overflow or do so in a safe manner.

Status

Fixed. This instance has been checked by using safe math operators:

 let item = match block_height.checked_sub(target_height) {
 Some(num) => StackItem::Number(num),
 None => {
 return Err(ScriptError::CompareFailed(
 "Couldn't subtract the target height from the
current block height".to_string(),
))
 },
 };

© Coinspect 2024 88 / 130

TARI-032

Attackers can crash node with a mempool
message

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/mempool/service/inbound_handlers.rs

Description

Attackers can crash the node with a SubmitTransaction request to a node's
mempool.

The cause is the debug! log line that is called whenever a new request is received:

 pub async fn handle_request(&mut self, request: MempoolRequest) ->
Result<MempoolResponse, MempoolServiceError> {
 debug!(target: LOG_TARGET, "Handling remote request: {}",
request);

This will indirectly call the fmt of the Display trait for the request. In the case of a
SubmitTransaction, the method performs an unsafe access to the first element of

© Coinspect 2024 89 / 130

the kernels() array of the request.

 MempoolRequest::SubmitTransaction(tx) => write!(
 f,
 "SubmitTransaction ({})",
 tx.body.kernels()
[0].excess_sig.get_signature().to_hex()
),

The attacker only has to send an invalid transaction with no kernels to trigger a
panic and halt the node.

It is worth noting that the unsafe access is repeated later in the handle_request
method, although it is impossible to trigger now because the panic will happen in
previous debug! macro:

 SubmitTransaction(tx) => {
 debug!(
 target: LOG_TARGET,
 "Transaction ({}) submitted using request.",
 tx.body.kernels()
[0].excess_sig.get_signature().to_hex(),
);

Ok(MempoolResponse::TxStorage(self.submit_transaction(tx,
None).await?))
 },

Recommendation

Do not directly access collection values that might not exist. Prefer .get() instead
of [] so an Option is returned.

Consider using Clippy's indexing_slicing linter to warn or deny slicing on vectors
and arrays.

Status

Fixed on a172b389e89514d7191f6aa48291e625fd8a9a1c.

This issue was originally intended to be fixed as of commit
14e334aff346aae8a081599488135c905c2c1f84. Nevertheless, on that commit only
the impossible-to-trigger vulnerability was addressed. Coinspect warned Tari

© Coinspect 2024 90 / 130

about the oversight and the development team fully patched the issue on the new
commit.

© Coinspect 2024 91 / 130

TARI-033

Dependencies that depend on wrap-on-
overflow will crash Tari

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

Description

Tari configures its release profile to throw a panic! on overflow. While the
intention behind this is correct, as a panic! and even a network halt is preferable
over incorrect computations, it is not the default behavior in Rust programs.

This raises the concern that some external dependencies might depend on the
default wrap-on-overflow behavior of the Rust compiler. It is worth noting that the
base project has full control over the profile section of the Cargo.toml:

Cargo supports custom configuration of how rustc is invoked through
profiles at the top level. Any manifest may declare a profile, but only
the top level project’s profiles are actually read. All dependencies’
profiles will be overridden. This is done so the top-level project has
control over how its dependencies are compiled.

© Coinspect 2024 92 / 130

This is specially important because Tari depends on several cryptographic third-
party crates. It is common for cryptography operations to use wrap-on-overflow
semantics as their operations work on a prime field where wrapping leads to the
correct result.

Recommendation

This is an informational issue as no direct impact has been identified.
Nevertheless, Coinspect considered this issue worth of Tari's attention due to the
amount of overflow related panics found on the audit.

Tari's team needs to take into account that their build options affect their
dependencies as well and test each of their dependencies with this in mind. It is
likely that at least some will need the development of a wrapper to provide safe
mathematical operations that do not rely on Rust's defaults.

Status

Tari has acknowledged this risk and stated:

Currently no dependancy has this set, will continue to check this as we
move along

© Coinspect 2024 93 / 130

TARI-034

Wrong test for double spend

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

base_layer/core/src/validation/block_body/test.rs

Description

The Tari test case that checks for double spends is wrong, as it actually tests for
duplicated excess factors and does not consider that an input can be reused while
changing the excess factor of the transaction.

The test is named it_checks_double_spends:

async fn it_checks_double_spends() {
 let (mut blockchain, validator) = setup(true);

 let (_, coinbase_a) = blockchain.add_next_tip(block_spec!
("A")).await.unwrap();
 let (txs, _) =
 schema_to_transaction(&[txn_schema!(from: vec![coinbase_a], to:
vec![50 * T])], &blockchain.km).await;

 blockchain

© Coinspect 2024 94 / 130

 .add_next_tip(block_spec!("1", transactions: txs.iter().map(|t|
(**t).clone()).collect()))
 .await
 .unwrap();
 let (block, _) = blockchain
 .create_next_tip(
 BlockSpec::new()
 .with_transactions(txs.iter().map(|t|
(**t).clone()).collect())
 .finish(),
)
 .await;
 let txn = blockchain.db().db_read_access().unwrap();
 let err = validator.validate_body(&*txn,
block.block()).unwrap_err();
 assert!(matches!(err, ValidationError::DuplicateKernelError(_)));
}

The issue is that the test uses the txs transactions twice, adding them to the
blockchain and then trying to validate a new block with the same transactions
again. This results in a DuplicateKernelError. But to correctly test for a double
spend, the inputs used are more important than the excess factor: an input can be
reused and added to other inputs to change the excess factor while still resulting
in a double spend.

No tests that check for correct error ContainsSTxO are in the project.

Recommendation

Rename the test to it_checks_for_duplicated_kernels. Create a new test that
reuses an input to check for double spends.

Coinspect auditors drafted this test which checks for the correct expected error:

async fn it_checks_double_spends() {
 let (mut blockchain, validator) = setup(true);

 // Create a new tip with a block, return its coinbase
 let (_, coinbase_a) = blockchain.add_next_tip(block_spec!
("A")).await.unwrap();

 // Create a TX using the coinbase as an input
 let (txs, _) =
 schema_to_transaction(&[txn_schema!(from: vec!
[coinbase_a.clone()], to: vec![50 * T])], &blockchain.km).await;

 // Add to the blockchain a block with the tx
 blockchain
 .add_next_tip(block_spec!("1", transactions: txs.iter().map(|t|
(**t).clone()).collect()))
 .await

© Coinspect 2024 95 / 130

 .unwrap();

 let (txs_reusing_coinbase, _) = schema_to_transaction(&[txn_schema!
(from: vec![coinbase_a], to: vec![100 * T])],
 &blockchain.km).await;

 // Add to the blockchain a new block
 let (block, _) = blockchain
 .create_next_tip(
 BlockSpec::new()
 .with_transactions(txs_reusing_coinbase.iter().map(|t|
(**t).clone()).collect())
 .finish(),
)
 .await;
 let txn = blockchain.db().db_read_access().unwrap();
 let err = validator.validate_body(&*txn,
block.block()).unwrap_err();
 assert!(matches!(err, ValidationError::ContainsSTxO));
}

Status

Fixed. A new test has been added which checks for the correct error.

© Coinspect 2024 96 / 130

TARI-035

Attackers can crash the node by sending
transaction with big fee

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

.../core/src/validation/aggregate_body/aggregate_body_internal_validat
or.rs

Description

An attacker can send a transaction with a big fee and crash the node. This is similar
to TARI-022 but leverages another path in the codebase.

The vulnerable method is sum_kernels, which will panic when trying to sum the
fees from a transaction that has over u64::MAX in fees.

fn sum_kernels(body: &AggregateBody, offset_with_fee:
PedersenCommitment) -> KernelSum {
 // Sum all kernel excesses and fees
 body.kernels().iter().fold(
 KernelSum {
 fees: MicroMinotari(0),

© Coinspect 2024 97 / 130

 sum: offset_with_fee,
 },
 |acc, val| KernelSum {
 fees: acc.fees + val.fee,
 sum: &acc.sum + &val.excess,
 },
)
}

The sum_kernels method is called by the validate_kernel_sum method, part of the
TransactionInternalConsistencyValidator, used to validate transactions from the
mempool.

Recommendation

Always use safe methods to perform mathematical operations.

Status

Fixed. sum_kernels now uses a safe method to add values and errs on overflow.

© Coinspect 2024 98 / 130

TARI-036

Overflows can potentially crash the node

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Description

As demonstrated by TARI-022, TARI-027, TARI-031 and TARI-036; overflows
are a serious concern for the Tari base node. In order to help development team
assess and address each potential overflow in the node, this issue lists all
potential overflows Coinspect auditors have found.

Not all of the overflows in this list are exploitable. Nevertheless, the
recommendation is to always use safe math operations such as checked_add when
computing to prevent the node from crashing.

1. sum_commitments method at
``base_layer/core/src/validation/aggregate_body/aggregate_body_internal_val
idator.rs`

2. get_side_chain_utxos method on request.count - 1 at
applications/minotari_node/src/grpc/base_node_grpc_server.rs

3. generate_coinbase_transaction method on let amount = reward + fees at
base_layer/wallet/src/transaction_service/service.rs

© Coinspect 2024 99 / 130

Recommendation

Address all potential overflows by always performing math with safe method
such as checked_add, wrapped_add or saturating_add.

Status

Tari has acknowledged the risk here and stated:

(we) have been auditing the code for evey single math operation to
either use checked/saturating or we have verified an overflow not
possible at all.

© Coinspect 2024 100 / 130

TARI-037

Sync is always done with a single peer

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Description

The sync process always attempts to sync the blockchain with a single peer at a
time.

This is considered a fragile design because it gives an untrusted peer too much
control over the syncing process, allowing malicious actors to potentially execute
exploits more effectively.

A syncing process that gets information from multiple peers to sync would be less
susceptible to this kind of manipulation.

Leveraging issues like TARI-013 into Denial of Service attacks are much more likely
when the syncing process is restricted into a single peer at a time.

Recommendation

© Coinspect 2024 101 / 130

Download sync data from multiple peers.

Status

Fixed. Tari has implemented a way to wait for multiple peers to present sync data
before starting the initial sync.

It is worth noting that this protection is only implemented for initial sync and not
for other scenarios where the peer has lagged behind.

© Coinspect 2024 102 / 130

TARI-038

Miner can force peers to sync

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

base_layer/core/src/base_node/sync/header_sync/synchronizer.rs

Description

A miner or attacker with a block with higher proof-of-work can lie about their
difficulty and height, forcing a peer to perform sync. This makes the victim not
accept new blocks and perform useless validations. The attacker is not penalized.

This issue is similar to TARI-013, but attackers need to provide a block with
higher proof of work. This makes the motivation similar to TARI-001: a miner
wants to delay other miners and gain advantage. In this case they can get up to 60
seconds advantage due to acquiring the add_block lock.

The attack leverages the fact that the initial header sync performed in
find_chain_split does not check for duplicated headers and makes requests to an
untrusted node.

All in all, an attacker has to:

© Coinspect 2024 103 / 130

1. Have a block with at least a slightly higher difficulty than the victim
2. Announce a much greater higher difficulty to the victim in order for them to

believe they have FallenBehind.
3. Wait 29s before responding to their find_chain_split request
4. Answer not_found
5. Victim will repeat request, wait 29s again
6. Answer with 998 known blocks and the one new block

This causes the victim to validate again the 998 known blocks plus the new one
here:

self.header_validator.initialize_state(chain_split_hash).await?;
 for header in headers {
 debug!(
 target: LOG_TARGET,
 "Validating header #{} (Pow: {}) with hash: ({})",
 header.height,
 header.pow_algo(),
 header.hash().to_hex(),
);
 self.header_validator.validate(header).await?;
 }

When the victim goes on to continue the header_sync, they will correctly set the
has_better_pow flag to true, as the new chain has indeed a better proof of work.

Because the attacker sent exactly 999 headers, the pending_len will be less than
NUM_INITIAL_HEADERS_TO_REQUEST which is set to 1000. The has_better_pow flag
will have been correctly set to true, as the chain is indeed better. This causes the
method to return with no more validations.

It is important to note that while in HeaderSync mode, the add_block lock is taken.
This makes adding new blocks to the database impossible while sync is ongoing.
The impact analysis is then similar to TARI-001: a miner gains advantage over
other ones by being able to mine on-top of a new block before the competition. In
this scenario, they also force the victim to revalidate known blocks.

It is also worth mentioning that the attack can also be carried out by an attacker
that has not found the best block, but will mint or receive it eventually.

Recommendation

Make sure that the syncing peer does not provide already-known blocks during the
initial header sync in determine_sync_status to mitigate the revalidation of known
blocks.

© Coinspect 2024 104 / 130

The attacker can still make the node wait for 29s on each request nevertheless. To
address this, consider:

Banning peers how have lied about their best height and difficulty to force the
peer to sync - although consideration must be taken that a peer might have
announced a difficulty and then changed their mind about the best chain.
Reducing the default timeout values.
Making the add_block lock more granular, making sure it is held only when
necessary and not during the whole header sync process.

Status

Fixed. New checks have been added that mitigate the chance of a peer sending
repeated blocks. In case they do, they are now banned.

The tolerance has been lowered from 30s to 15s, further mitigating the impact of
the attack.

© Coinspect 2024 105 / 130

TARI-039

Wallet reports stale balance results with no
warnings

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

base_layer/wallet/src/base_node_service/service.rs

Description

The wallet returns stale balance results with no warning to the user if it cannot
get a live state from the base node. This will lead clients to use stale results.
There is no way to distinguish between stale and updated results.

This is because the GetBalance operation uses the get_chain_metadata function to
calculate the current tip. GetChainMetadata in turn will return an Ok result even
when it fetches possibly outdated data from its database.

 OutputManagerRequest::GetBalance => {
 let current_tip_for_time_lock_calculation = match
self.base_node_service.get_chain_metadata().await {
 Ok(metadata) => metadata.map(|m|
m.height_of_longest_chain()),

© Coinspect 2024 106 / 130

 Err(_) => None,
 };
 self.get_balance(current_tip_for_time_lock_calculation)
 .map(OutputManagerResponse::Balance)
 },

 BaseNodeServiceRequest::GetChainMetadata => match
self.get_state().await.chain_metadata {
 Some(metadata) =>
Ok(BaseNodeServiceResponse::ChainMetadata(Some(metadata))),
 None => {
 // if we don't have live state, check if we've
previously stored state in the wallet db
 let metadata = self.db.get_chain_metadata()?;

Ok(BaseNodeServiceResponse::ChainMetadata(metadata))
 },
 },

Recommendation

Provide a clear warning to users that they are getting outdated data.

Status

Fixed. The wallet not prints a warning when the latency with the base node
passes a threshold.

© Coinspect 2024 107 / 130

TARI-040

DirectOnly wallets report the transaction
being sent when it is not

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

base_layer/wallet/src/transaction_service/protocols/transaction_send_p
rotocol.rs

Description

Due to a known bug with DirectSend which occasionally reports that a transaction
has been sent successfully when it has not, even the send_transaction_direct
method will attempt to use a SAF strategy as a backup.

The problem is that DirectOnly nodes are prevented from using SAF:

 if self.resources.config.transaction_routing_mechanism ==
TransactionRoutingMechanism::DirectOnly {
 return Ok(false);
 }

© Coinspect 2024 108 / 130

This results in DirectOnly reporting success on transactions that have not been
received.

Recommendation

Deprecate DirectOnly or provide a clear warning that this bug is known and its use
is not recommended.

Status

Fixed. The wallet now prints a warning message if using DirectOnly.

© Coinspect 2024 109 / 130

TARI-041

Attackers can continuously spam low
difficulty blocks

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

base_layer/core/src/base_node/comms_interface/inbound_handlers.rs

Description

An attacker can continuously spam a victim with low difficulty blocks, and this will
not result in the banning of the sender. This makes the victim node waste
resources and facilitate attacks such as TARI-042.

The lack of ban can be seen in the check_min_block_difficulty method:

 async fn check_min_block_difficulty(&self, new_block: &NewBlock) ->
Result<(), CommsInterfaceError> {
 let constants =
self.consensus_manager.consensus_constants(new_block.header.height);
 let min_difficulty =
constants.min_pow_difficulty(new_block.header.pow.pow_algo);
 let achieved = match new_block.header.pow_algo() {

© Coinspect 2024 110 / 130

 PowAlgorithm::RandomX =>
randomx_difficulty(&new_block.header, &self.randomx_factory)?,
 PowAlgorithm::Sha3x =>
sha3x_difficulty(&new_block.header)?,
 };
 if achieved < min_difficulty {
 self.blockchain_db
 .add_bad_block(
 new_block.header.hash(),

self.blockchain_db.get_chain_metadata().await?.height_of_longest_chain(
),
)
 .await?;
 return Err(CommsInterfaceError::InvalidBlockHeader(

BlockHeaderValidationError::ProofOfWorkError(PowError::AchievedDifficul
tyBelowMin),
));
 }
 Ok(())
 }

Recommendation

Ban nodes that send blocks with a lower difficulty that the minimum.

Status

Fixed. The check_min_block_difficulty has improved so it uses a dynamically
adjusted minimum difficulty and bans nodes that send garbage blocks.

© Coinspect 2024 111 / 130

TARI-042

Attackers can hold the DB write lock with
low difficulty blocks

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

base_layer/core/src/base_node/comms_interface/inbound_handlers.rs

Description

An attacker can get a hold of the DB write lock by sending blocks that do not meet
the minimum difficulty.

The cause is that adding the blocks to the bad block list requires the node to
acquire a lock for writing in the DB. While the time that lock is held is very short,
an attacker can continuously send messages and maximize the lock time to
prevent other writes to the database.

Recommendation

© Coinspect 2024 112 / 130

Do not add blocks that do not meet the minimum difficulty to the bad block list.
This poses no risk, as producing blocks with low PoW is easy for attackers so
banning them does not hamper attackers.

Status

Fixed. Low difficulty blocks are not added to the bad block list.

© Coinspect 2024 113 / 130

TARI-043

Wallet can minimize trust with base node by
requesting proof of work

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

Description

The wallet consumes new blocks from a base node set by the user. However, it
fully trusts the node to provide valid main-chain blocks, as it performs validations
only on the transactions received:

 BaseNodeEvent::NewBlockDetected(_hash, height) => {
 let _operation_id = self

.start_transaction_validation_protocol(transaction_validation_join_hand
les)
 .await
 .map_err(|e| {
 warn!(target: LOG_TARGET, "Error validating
txos: {:?}", e);
 e
 });

© Coinspect 2024 114 / 130

 self.last_seen_tip_height = Some(height);
 },

Recommendation

The relationship between the wallet and the base node could be trust-minimized
by making the wallet check the proof of work of blocks provided by the base node.

Status

Tari has stated that it is assumed that the base node is trusted. In particular, Tari
said:

The current wallet design is created with the assumption that base
nodes are trusted by the wallet. There is no alternative model at the
moment, but is something that could be for future development.

© Coinspect 2024 115 / 130

TARI-044

Attackers can flood victim with peer
addresses

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Low
Likelihood
High

Location

comms/core/src/peer_manager/peer_storage.rs

Description

An attacker can continuously and quickly announce new addresses to a victim,
flooding a victim with Join messages and making the addresses vector of the
victim grow indefinitely. The attacker can thus make the victim waste CPU time
and storage.

The storage use is negligible due to the limit on the amount of addresses sent on
each Join message imposed by the fixes on issue TARI-021. Nevertheless, the
computing time is asymmetrical, as the attacker uses less computing time to send
messages than the victim to process them.

Processing the addresses grows quadratically in the number of values sent,
because the merge procedure checks if each address is already known

© Coinspect 2024 116 / 130

 pub fn merge(&mut self, other: &MultiaddressesWithStats) {
 for addr in &other.addresses {
 if let Some(existing) =
self.find_address_mut(addr.address()) {
 existing.merge(addr);
 } else {
 self.addresses.push(addr.clone());
 }
 }
 }

 /// Finds the specified address in the set and allow updating of
its variables such as its usage stats
 fn find_address_mut(&mut self, address: &Multiaddr) -> Option<&mut
MultiaddrWithStats> {
 self.addresses.iter_mut().find(|a| a.address() == address)
 }

This process is protected from being multi-threaded by a lock, which further slows
down the processing of the flood of messages.

 pub async fn add_peer(&self, peer: Peer) -> Result<PeerId,
PeerManagerError> {
 let t = Instant::now();
 let mut lock = self.peer_storage.write().await;
 let peer_id = lock.add_peer(peer)?;
 #[cfg(feature = "metrics")]
 {
 let count = lock.count();
 metrics::peer_list_size().set(count as i64);
 }
 Ok(peer_id)
 }

Any node that connects to the victim can be automatically attacked by the attacker,
as the victim will share the attacker as a normal, benign peer.

Recommendation

Limit the amount of addresses a peer can have. Implement a rate limit mechanism
for all messages.

Status

The merge method now limits the amount of addresses a peer has which is enough
to render the impact of the issue negligible.

© Coinspect 2024 117 / 130

TARI-045

Some errors are not obscured by gRPC
server

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

applications/minotari_node/src/grpc/base_node_grpc_server.rs

Description

Attackers can get information about the base node via gRPC errors, even when the
user has set the configuration to obscure the errors.

The particular method that fails to obscure the errors is get_new_block_blob,
where the obscure_error_if_true call is missing:

 let new_block = match
handler.get_new_block(block_template).await {
 Ok(b) => b,

Err(CommsInterfaceError::ChainStorageError(ChainStorageError::InvalidAr
guments { message, .. })) => {
 return Err(Status::invalid_argument(message));

© Coinspect 2024 118 / 130

 },

Err(CommsInterfaceError::ChainStorageError(ChainStorageError::CannotCal
culateNonTipMmr(msg))) => {
 let status = Status::with_details(
 tonic::Code::FailedPrecondition,
 msg,
 Bytes::from_static(b"CannotCalculateNonTipMmr"),
);
 return Err(status);
 },
 Err(e) => return Err(Status::internal(e.to_string())),
 };

Errors related to the serialization of the blob also will not be obscured:

 let mut header_bytes = Vec::new();
 BorshSerialize::serialize(&header, &mut
header_bytes).map_err(|err| Status::internal(err.to_string()))?;

There are also other inconsistencies in the usage of the obscure_error_if_true
method. For example, the majority of invalid arguments are not obscured, possible
to let the requester know what they must correct for their request to succeed. But
some, like errors related to the public key serialization in get_shard_key, are
obscured:

 let public_key = PublicKey::from_bytes(&request.public_key)
 .map_err(|e| obscure_error_if_true(report_error_flag,
Status::invalid_argument(e.to_string())))?;

Recommendation

Document which errors are obscured and which are not. Make sure all errors
follow the documented policy.

Status

Fixed. Errors are obscured now all the time if the user configured the node to do
so.

© Coinspect 2024 119 / 130

TARI-046

Not possible to disable gRPC methods

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Description

gRPC server is either enabled or disabled, with no way to filter which methods the
node or wallet operator wants to expose.

While this can be resolved by the use of a reverse-proxy, it is recommended that
the configuration exists to protect unaware operators. In particular, certain
methods should be disabled by default unless the operator explicitly requests
them, because they provide information about a node that in most cases should be
private, such as:

check_for_updates
get_version
list_connected_peers
get_sync_progress
get_network_status
get_peers

© Coinspect 2024 120 / 130

Recommendation

Add the capability to disable or enable gRPC methods. Disable methods that
provide internal information of the node by default.

Status

Tari implemented this recommendation and now sensitive methods are disabled
by defaults.

© Coinspect 2024 121 / 130

TARI-047

Inaccuracy on pruning on RFC-0140

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

Description

RFC-0140 states that:

When running in pruning mode, Base Nodes MUST remove all spent outputs
that are older than the pruning horizon in their current stored UTXO
set when a new block is received from another Base Node.

Nevertheless, pruning code does not follow exactly this. Base nodes remove
spent outputs (and inputs) when receiving a new block only after a certain
pruning_interval has passed. This makes it possible for a pruning node to actually
have full blocks available that are older than their pruning horizon.

 if metadata.pruned_height() <
abs_pruning_horizon.saturating_sub(pruning_interval) {
 prune_to_height(db, abs_pruning_horizon)?;
 }

https://rfc.tari.com/RFC-0140_Syncing_and_seeding.html

© Coinspect 2024 122 / 130

Recommendation

Amend to RPC to reflect actual base node behavior.

Status

Fixed. Tari amended their RPC to read SHOULD instead of MUST.

© Coinspect 2024 123 / 130

TARI-048

No warning when using weak or empty
password on account recovery

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

applications/minotari_console_wallet/src/lib.rs

Description

When recovering an account from a seed phrase, the console wallet does not
analyze the strength of the password set to protect the seed phrase. Thus, the
wallet does not warn the user if providing an empty or weak password.

 let password = match boot_mode {
 WalletBoot::New => {
 // Get a new passphrase
 debug!(target: LOG_TARGET, "Prompting for passphrase.");
 get_new_passphrase("Create wallet passphrase: ", "Confirm
wallet passphrase: ")?
 },
 WalletBoot::Existing | WalletBoot::Recovery => {
 debug!(target: LOG_TARGET, "Prompting for passphrase.");
 prompt_password("Enter wallet passphrase: ")?

© Coinspect 2024 124 / 130

 },
 };

Recommendation

Execute the display_password_feedback function on the password used to protect
the seed phrase to be recovered.

Status

Fixed. The Recovery flow now executes get_new_passphrase(), which will in turn
execute display_password_feedback. /--

© Coinspect 2024 125 / 130

TARI-049

Attackers can crash whole node by panicking
a single thread

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

applications/minotari_node/src/main.rs

Description

A panic on a thread will cause the whole process to be aborted. This happens both
in the wallet and in the base node.

fn main() {
 // Setup a panic hook which prints the default rust panic message
but also exits the process. This makes a panic in
 // any thread "crash" the system instead of silently continuing.
 let default_hook = panic::take_hook();
 panic::set_hook(Box::new(move |info| {
 default_hook(info);
 process::exit(1);
 }));

© Coinspect 2024 126 / 130

This design decision allowed several vulnerabilities in this report to be of critical
severity. For example, panics on RPC requests would have practically no impact
when their thread panics instead of being a tool for triggering a denial of service on
the whole network.

Panics on threads should be treated as bugs and fixed, but an attacker would have
a much harder time converting them to successful exploits if the program did not
crash immediately.

Recommendation

Panics must be handled more gracefully. For example, a panic during a block
processing should end with the ban of the peer that sent and the invalidation of
the block, instead of closing the program.

Status

Fixed. A panicking thread will now not crash the whole application.

© Coinspect 2024 127 / 130

TARI-050

Privacy compromise fetching code template
repository URL

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

applications/tari_console_wallet/src/ui/components/register_template_t
ab.rs:538

Description

In the console wallet's code template registration functionality, the URL data will
be automatically fetched to compute its hash. In an scenario where an adversary
controls the site hosting the repository fetched by the wallet, they can reveal the
IP associated with the Tari address that registered the code template,
compromising the user's privacy.

Once the user completes the (B)inary URL: field in the screen below:

© Coinspect 2024 128 / 130

The wallet will issue a GET request to this URL:

Due to the reqwest::get(url) line from the following code block:

let data = reqwest::get(url).await;
match data {
 Ok(data) => match data.status() {
 StatusCode::OK => match data.bytes().await {
 Ok(bytes) => {
 let mut hasher = Blake256::new();
 hash_domain!(TariEngineHashDomain,
"com.tari.dan.engine", 0);
 TariEngineHashDomain::add_domain_separation_tag(&mut
hasher, "Template");
 let hash: [u8; 32] =

© Coinspect 2024 129 / 130

hasher.chain(bytes).finalize().into();
 hex_string = hash.to_hex();
 },
 Err(e) => {
 error = Some(format!("Error {:?}\nPress Enter to
continue.", e));
 },
 },

Recommendation

Route the GET request via a Tor SOCKS proxy.

Otherwise, clearly communicate users the privacy risks involved, and urge them to
use only trusted URLs, avoiding those provided by third parties.

Status

Fixed. A warning stating that the feature should only be used with trusted URLs
has been added.

© Coinspect 2024 130 / 130

Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

